New Example of Acyl Cleavage of Benzoyl-1,1,1-trifluoroacetone in a Three-Component Synthesis of 4-Aryl-2-thioxo-6-phenyl-1,2-dihydropyridine-3-carbonitriles

V. D. Dyachenko
Shevchcenko Lugansk National University, ul. Oboronnaya, 2, Lugansk, 91011 Ukraine
e-mail:dvd_lug@online.lg.ua

Received February 28, 2011

Abstract

A three-component condensation of aromatic aldehydes, cyanothioacetamide, and benzoyl-1,1,1trifluoroacetone, involving the acyl cleavage of the latter, results in 4-aryl-2-thioxo-6-phenyl-1,2-dihydro-pyridine-3-carbonitriles. Their alkylation was studied.

DOI: 10.1134/S1070363212050180

Previously, we found that arylmethylene cyanothioacetamides react with benzoyl-1,1,1-trifluoroacetone under the Michael reaction conditions to form 4-aryl-2-thioxo-6-phenyl-1,2-dihydropyridine-3-carbonitriles rather than the expected substituted 5 -trifluoroacetyl-pyridine- $2(1 H)$-thiones. This is due to the acyl cleavage of benzoyl-1,1,1-trifluoracetone during the reaction [1].

In the present work we show that the three-component condensation of aromatic aldehydes I with cyanothioacetamide II and benzoyl-1,1,1-trifluoracetone III occurs in ethanol at $20^{\circ} \mathrm{C}$ in the presence of two-fold excess of N-methylmorpholine to give 4 -aryl-2-thioxo-6-phenyl-1,2-dihydropyridine-3-carbonitriles IV (method a). The reaction proceeds apparently through the Knoevenagel condensation to form the products \mathbf{V} followed by the Michael addition of CH -acid III. The corresponding obtained adducts VI undergo the acyl cleavage [2] through intermediates VII formation followed by the intramolecular cyclization to yield the substituted pyridine- $2(1 \mathrm{H})$-thiones IV by eliminating water and trifluoroacetic acid.

The structure of compounds IV was confirmed by the spectroscopic studies, authentic synthesis from chalcone VIII and cyanothioacetamide II in the presence of piperidine (method b) [3], as well as by the chemical transformations.

Thus, the treating of compounds IVa and IVb with alkali in a DMF solution followed by reacting with alkyl halides IXa-IXI gives rise to thioethers $\mathbf{X a}-\mathbf{X n}$. The reaction occurs probably via the formation of salts

XI and their regioselective alkylation involving the sulfur atom, which is typical for such systems [4]. Further treating of thioethers $\mathbf{X a}-\mathbf{X n}$ with alkali in DMF affords substituted thieno[2,3-b]pyridines XIIaXIIg (method a), which can be obtained also by the one-pot reaction of pyridine thiones IVa and IVb with alkylating agents IXa-IXh in an alkaline medium (method b). Thus, the thiophene ring closure in this reaction indicates the vicinal location of cyano and alkylsulfanyl groups. Compounds XII are promising for designing products with antienzymatic [5, 6], antidepressant [7], neurotropic [8], and antitumor [9, 10] actions. The yields, elemental analysis data, and melting points of the synthesized compounds X, XII are given in Table 1.

The IR spectra of the obtained compounds \mathbf{X} contain the characteristic absorption bands of the stretching vibrations of the conjugated cyano group in the range of $2220-2230 \mathrm{~cm}^{-1}$. In the spectra of thienopyridines XII these signals are absent, and there are absorption bands of the stretching and bending vibrations of amino group at v 3211-3348 and 1640$1649 \mathrm{~cm}^{-1}$, respectively.

In the ${ }^{1} \mathrm{H}$ NMR spectra of compounds \mathbf{X} there are the signals of aromatic protons, $\mathrm{C}^{5} \mathrm{H}$ pyridine ring proton, the protons of Z fragment with the corresponding chemical shifts δ (Table 2), and the SCH_{2} proton signals at $\delta 3.28-5.07 \mathrm{ppm}$. The ${ }^{1} \mathrm{H}$ NMR spectra of compounds XII contain a broad singlet of the NH_{2} protons at $\delta 5.41-6.83 \mathrm{ppm}$ instead of SCH_{2} protons, which is typical for such systems [11].

Ia, Ib
II
III

V

VIIIa, VIIIb
IVa, IVb
XI

I, IV, VIII, $\mathrm{Ar}=2-\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{a}), 4-\mathrm{BrC}_{6} \mathrm{H}_{4}(\mathbf{b}) ; \mathrm{IX}, \mathrm{Hlg}=\mathrm{Br}, \mathrm{Z}=\mathrm{PhCO}(\mathbf{a}) ; \mathrm{Cl}, \mathrm{COOMe}(\mathbf{b}) ; \mathrm{Br}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CO}$ (c); Br , 4- $\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}(\mathbf{d}) ; \mathrm{Br}, 4-\mathrm{PhC}_{6} \mathrm{H}_{4} \mathrm{CO}(\mathbf{e}) ; \mathrm{Cl}, 4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{NHCO}(\mathbf{f}) ; \mathrm{Cl}, \mathrm{COOCH}_{2} \mathrm{Ph}(\mathbf{g}) ; \mathrm{Cl}, \mathrm{CN}(\mathbf{h}) ; \mathrm{Br}, 2-\mathrm{MeC}_{6} \mathrm{H}_{4}$ (i); I , Me $\left(\mathrm{CH}_{2}\right)_{4}(\mathbf{j})$; $\mathrm{I}, \mathrm{Me}(\mathbf{k}) ; \mathrm{Cl}, \mathrm{Ph}(\mathbf{l}) ; \mathbf{X , X I I}, \mathrm{Ar}=4-\mathrm{BrC}_{6} \mathrm{H}_{4}, \mathrm{Z}=\mathrm{COOCH}_{2} \mathrm{Ph}(\mathbf{a}) ; 2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{PhCO}(\mathbf{b}) ; 2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{COOMe}$ (c); 2- $\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CO}$ (d); 2- $\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4} \mathrm{CO}$ (e); 2- $\mathrm{MeOC}_{6} \mathrm{H}_{4}, 4-\mathrm{PhC}_{6} \mathrm{H}_{4} \mathrm{CO}$ (f); 2- $\mathrm{MeOC}_{6} \mathrm{H}_{4}$, 4$\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{NHCO}(\mathbf{g}) ; 2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{COOCH}_{2} \mathrm{Ph}(\mathbf{h}) ; 2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{CN}(\mathbf{i}) ; 2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, 2-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{j}) ; 2-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{Me}\left(\mathrm{CH}_{2}\right)_{4}$ (k); 2- $\mathrm{MeOC}_{6} \mathrm{H}_{4}$, $\mathrm{Me}(\mathbf{l}), 4-\mathrm{BrC}_{6} \mathrm{H}_{4}, \mathrm{Ph}(\mathbf{m}) ; 4-\mathrm{BrC}_{6} \mathrm{H}_{4}, 4-\mathrm{BrC}_{6} \mathrm{H}_{4} \mathrm{NHCO}(\mathbf{n}) ; 4-\mathrm{BrC}_{6} \mathrm{H}_{4}, \mathrm{CN}(\mathbf{0})$.

EXPERIMENTAL

The IR spectra were recorded on an IKS-40 instrument (mulls in mineral oil). The ${ }^{1} \mathrm{H}$ NMR spectra were registered on a Bruker WP-100SY instrument $\left(100 \mathrm{MHz}\right.$) in DMSO- d_{6} relative to internal TMS. The mass spectra were taken on a Crommas GC/MS-Hewlett-Packard 5890/5972 spectrometer, column HP$5 \mathrm{MS}(70 \mathrm{eV})$ in a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. The melting points were determined on a Koeffler block. The reaction progress and purity of the obtained compounds were
monitored by TLC on Silufol UV 254 plates eluting with an acetone-hexane mixture (3:5) and detecting with iodine vapor and UV irradiation.

4-(2-Methoxyphenyl)-2-thioxo-6-phenyl-1,2-di-hydropyridine-3-carbonitrile (IVa). a. A mixture of $1.21 \mathrm{ml}(10 \mathrm{mmol})$ of o-anisaldehyde $\mathbf{I a}, 1.0 \mathrm{~g}(10 \mathrm{mmol})$ of cyanothioacetamide II, and 1 drop of N-methylmorpholine in 20 ml of ethanol was stirred at $20^{\circ} \mathrm{C}$ for 15 min , after which was added $1.54 \mathrm{ml}(10 \mathrm{mmol})$ of benzoyl-1,1,1-trifluoroacetone III and $2.2 \mathrm{ml}(20 \mathrm{mmol})$

Table 1. Yields, melting points, and elemental analysis data of 4-aryl-2-Z-methylsulfanyl-6-phenylpyridine-3-carbonitriles Xa-Xn and 3-amino-4-aeyl-6-phenyl-2-Z-thieno[2,3-b]pyridines XIIa-XIIg, XIIo

Comp. no.	Yield, \% (a/b)	$\mathrm{mp},{ }^{\circ} \mathrm{C}$	Found, \%			Formula	Calculated, \%		
			C	H	N		C	H	N
Xa	74	181-182 (AcOH)	62.88	3.65	5.33	$\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$	62.92	3.72	5.44
Xb	66	141-143 (BuOH)	74.13	4.50	6.33	$\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	74.29	4.62	6.42
Xc	70	135-137 (MeCN)	67.58	4.49	7.02	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	67.68	4.65	7.17
Xd	73	205-207 (BuOH)	74.52	4.81	6.13	$\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	74.64	4.92	6.22
Xe	78	140-142 (BuOH)	68.70	3.95	5.84	$\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$	68.86	4.07	5.95
Xf	74	210-212 (BuOH)	77.14	4.68	5.31	$\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	77.32	4.72	5.46
Xg	78	211-213 (AcOH)	60.98	3.72	7.78	$\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}$	61.14	3.80	7.92
Xh	82	165-166 (BuOH)	71.95	4.68	5.81	$\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	72.08	4.75	6.00
Xi	68	157-159 (AcOH)	70.40	4.15	11.69	$\mathrm{C}_{21} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{OS}$	70.57	4.23	11.76
Xj	75	103-105 (BuOH)	76.62	5.19	6.47	$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{OS}$	76.75	5.25	6.63
Xk	69	63-64 (MeOH)	74.48	6.37	6.85	$\mathrm{C}_{25} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{OS}$	74.59	6.51	6.96
XI	73	$81-83$ (EtOH)	72.71	5.13	7.94	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{OS}$	72.81	5.24	8.09
Xm	70	180-181 (AcOH)	65.49	3.67	5.95	$\mathrm{C}_{25} \mathrm{H}_{17} \mathrm{BrN}_{2} \mathrm{~S}$	65.65	3.75	6.12
Xn	78	227-229 (DMF)	53.85	2.81	7.14	$\mathrm{C}_{26} \mathrm{H}_{17} \mathrm{Br}_{2} \mathrm{~N}_{3} \mathrm{OS}$	53.91	2.96	7.25
XIIa	75/69	183-185 (AcOH)	62.80	3.61	5.32	$\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{BrN}_{2} \mathrm{O}_{2} \mathrm{~S}$	62.92	3.72	5.44
XIIb	81/78	220-222 (AcOH)	74.03	4.58	6.34	$\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	74.29	4.62	6.42
XIIc	74/80	198-200 (AcOH)	67.61	4.48	6.99	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$	67.68	4.65	7.17
XIId	69/75	182-184 (AcOH)	74.54	4.88	6.18	$\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	74.64	4.92	6.22
XIIe	72/81	181-183 (AcOH)	68.77	3.96	5.79	$\mathrm{C}_{27} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{O}_{2} \mathrm{~S}$	68.86	4.07	5.95
XIIf	66/78	229-231 (DMF)	77.25	4.60	5.33	$\mathrm{C}_{33} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$	77.32	4.72	5.46
XIIh	84/77	195-196 (BuOH)	61.02	3.71	7.84	$\mathrm{C}_{27} \mathrm{H}_{20} \mathrm{BrN}_{3} \mathrm{O}_{2} \mathrm{~S}$	61.14	3.80	7.92
XIIO	-/70	$245-247^{\text {a }}$ (AcOH)	59.01	2.85	10.22	$\mathrm{C}_{20} \mathrm{H}_{12} \mathrm{BrN}_{3} \mathrm{~S}$	59.12	2.98	10.34

${ }^{a}$ At $210^{\circ} \mathrm{C}$ sublimation occurs.
of N-methylmorpholine. The mixture was stirred for 4 h and left standing for 48 h . Then the reaction mixture was diluted with 10% hydrochloric acid to pH 5 and kept for 1 day. The precipitate formed was filtered off, washed with water, ethanol and hexane. Yield 2.2 g (69\%), yellow powder, mp $138-140^{\circ} \mathrm{C}$ (AcOH). IR spectrum, $v, \mathrm{~cm}^{-1}: 3380(\mathrm{NH}), 2228(\mathrm{C} \equiv \mathrm{N}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $3.84 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 07.08 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{~N}\right.$, pyridine), $7.12 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.1 \mathrm{~Hz}\right), 7.23 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right.$, $J 8.7 \mathrm{~Hz}), 7.39-7.63 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.84 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J\right.$ $8.1 \mathrm{~Hz}), 3.8 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 14.23 \mathrm{br}$. s ($1 \mathrm{H}, \mathrm{NH}$). Found, \%: C 71.52; H 4.29; N 8.71. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$. Calculated, \%: C 71.68; H 4.43; N 8.80.

4-(4-Bromophenyl)-2-thioxo-6-phenyl-1,2-dihyd-ropyridine-3-carbonitrile (IVb) was prepared similarly to compound IVa using $1.85 \mathrm{~g}(10 \mathrm{mmol})$ of 4-bromobenzaldehyde Ib. Yield $2.64 \mathrm{~g}(72 \%), \mathrm{mp} 219-221^{\circ} \mathrm{C}$ (AcOH) (216-218 $\left.{ }^{\circ} \mathrm{C}[3]\right)$.

The method b used was described in [3]. The yield of compound IVa was 75%, of $\mathbf{I V b}, 77 \%$.

2-Alkylsulfanyl-4-aryl-6-phenylpyridine-3-carbonitriles Xa-Xn were prepared by the method of [12].

GC-MS spectrum of compound $\mathbf{X h}, m / z\left(I_{\text {rel }}, \%\right)$: 467 (100) $[M+1]^{+}$.

3-Amino-4-aryl-6-phenyl-2-Z-thieno[2,3-b]pyridines (XIIa-XIIg, XIIo). a. To a solution of 10 mmol of thioether \mathbf{X} in 15 ml of DMF was added with stirring $5.6 \mathrm{ml}(10 \mathrm{mmol})$ of 10% aqueous solution of KOH . The reaction mixture was stirred for 6 h , and then diluted with an equal volume of water. The resulting precipitate was filtered off, washed with water, ethanol, and hexane.

GC-MS spectrum of compound XIIh, $m / z\left(I_{\text {rel }}, \%\right)$: 467 (100) $[M+1]^{+}$.
b. To a stirred solution of 10 mmol of pyridinethione IV in 20 ml of DMF was sequentially added $5.6 \mathrm{ml}(10 \mathrm{mmol})$ of 10% aqueous solution of KOH and 10 mmol of the alkylating agent IX. The mixture was stirred for 4 h , and then the same amount

Table 2. The IR and ${ }^{1} \mathrm{H}$ NMR spectral data of 4-aryl-2-Z-methylsulfanyl-6-phenylpyridine-3-carbonitriles Xa-Xn and 3-amino-4-aeyl-6-phenyl-2-Z-thieno[2,3-b]pyridines XIIa-XIIg, XIIo

Comp. no.	IR spectrum, $v, \mathrm{~cm}^{-1}$		${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}\left({ }^{3} \mathrm{~J}, \mathrm{~Hz}\right)$	
	$\begin{gathered} \mathrm{C} \equiv \mathrm{~N} \\ \text { or } \mathrm{NH}_{2} \end{gathered}$	$\begin{gathered} \mathrm{C}=\mathrm{O}, \\ \delta \mathrm{NH}_{2} \end{gathered}$	$\begin{aligned} & \mathrm{SCH}_{2}(\mathrm{~s}) \text { or } \\ & \mathrm{NH}_{2} \text { (br.s) } \end{aligned}$	other signals
Xa	2226	1710	4.36	$\begin{aligned} & 5.14 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.28 \mathrm{~s}(5 \mathrm{H}, \mathrm{Ph}), 7.49 \mathrm{~m}(3 \mathrm{H}, \mathrm{Ph}), 7.62 \mathrm{~d} \text { and } 7.84 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4},\right. \\ & J 7.52), 7.92 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{\mathrm{Py}}\right), 8.20 \mathrm{~m}(2 \mathrm{H}, \mathrm{Ph}) \end{aligned}$
Xb	2224	1714	5.06	$3.82 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.11-7.92 \mathrm{~m}\left(13 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.15 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.84\right)$
Xc	2225	1702	4.27	$\begin{aligned} & 3.67 \mathrm{~s}(3 \mathrm{H}, \mathrm{COOMe}), 3.82 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.11-7.37 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.42-7.73 \mathrm{~m}(5 \mathrm{H}, \\ & \mathrm{Ph}), 7.88 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{\mathrm{Py}}\right), 8.19 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right) \end{aligned}$
Xd	2230	1715	5.01	$2.44 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 3.82 \mathrm{~s}(3 \mathrm{H}, \mathrm{MeO}), 7.02-7.61 \mathrm{~m}\left(9 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.72 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{\mathrm{Py}}\right), 7.85$ $\mathrm{d}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 7.72\right), 8.05 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.85\right)$
Xe	2228	1718	5.04	$\begin{aligned} & 3.83 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.02-7.55 \mathrm{~m}\left(7 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.64 \mathrm{~d} \text { and } 8.16 \mathrm{~d}\left(2 \mathrm{H}, 4-\mathrm{ClC}_{6} \mathrm{H}_{4}, J 8.58\right) \text {, } \\ & 7.79 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{\mathrm{Py}}\right), 7.88 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.75\right) \end{aligned}$
Xf	2222	1703	5.07	$\begin{aligned} & 3.84 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.02-7.61 \mathrm{~m}\left(12 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.72 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{\mathrm{Py}}\right), 7.87-7.99 \mathrm{~m}(4 \mathrm{H}, \\ & \left.\mathrm{H}_{\mathrm{Ar}}\right), 8.21 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.14\right) \end{aligned}$
Xg	$\begin{aligned} & 2220 \\ & 3211 \end{aligned}$	1667	4.31	$3.82 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.09-7.49 \mathrm{~m}\left(7 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.61 \mathrm{~d}\left(4 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 7.52\right), 7.81 \mathrm{~s}(1 \mathrm{H}$, $\mathrm{C}^{5} \mathrm{H}_{\mathrm{Py}}$), $8.15 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.79\right), 10.62 \mathrm{br} . \mathrm{s}(1 \mathrm{H}, \mathrm{NH})$
Xh	2225	1717	4.37	$\begin{aligned} & 3.81 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 5.14 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{OCH}_{2}\right), 7.13 \mathrm{t}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 7.02\right), 7.26 \mathrm{~s}(5 \mathrm{H}, \mathrm{Ph}), 7.31- \\ & 7.62 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.84 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{\mathrm{Py}}\right), 8.17 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.66\right) \end{aligned}$
Xi	$\begin{aligned} & 2227 \\ & 2248 \end{aligned}$	-	4.53	$\begin{aligned} & 3.83 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.26 \mathrm{t}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 7.11\right), 7.39-7.68 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.98 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), \\ & 8.34 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right) \end{aligned}$
$\mathbf{X j}$	2221	-	4.73	$\begin{aligned} & 2.42 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 3.81 \mathrm{~s}(3 \mathrm{H}, \mathrm{MeO}), 7.02-7.29 \mathrm{~m}\left(5 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.34-7.65 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right) \text {, } \\ & 7.84 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{\mathrm{Py}}\right), 8.27 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right) \end{aligned}$
Xk	2228	-	$\begin{gathered} 3.28 \mathrm{t} \\ (J 7.11) \end{gathered}$	$0.85 \mathrm{t}(3 \mathrm{H}, \mathrm{Me}, J 7.19), 1.12-1.56 \mathrm{~m}\left(6 \mathrm{H}, 3 \mathrm{CH}_{2}\right), 1.69-1.87 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.83 \mathrm{~s}$ $(3 \mathrm{H}, \mathrm{MeO}), 7.04-7.65 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.81 \mathrm{~s}, 8.23 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$
XI	2226	-	$\begin{gathered} 3.47 \mathrm{q} \\ (J 7.23) \end{gathered}$	$\begin{aligned} & 1.42 \mathrm{t}(3 \mathrm{H}, \mathrm{Me}, J 7.23), 3.81 \mathrm{~s}(3 \mathrm{H}, \mathrm{MeO}), 7.01-7.32 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.44-7.69 \mathrm{~m}(4 \mathrm{H}, \\ & \left.\mathrm{H}_{\mathrm{Ar}}\right), 7.81 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{\mathrm{C}} \mathrm{H}_{\mathrm{Py}}\right), 8.22 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right) \end{aligned}$
Xm	2227	-	4.71	$\begin{aligned} & 7.16-7.39 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.41-7.65 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.70-7.81 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right) 7.92 \mathrm{~s}(1 \mathrm{H}, \\ & \left.\mathrm{C}^{5} \mathrm{H}_{\mathrm{Py}}\right), 8.28 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right) \end{aligned}$
Xn	2229	1677	4.31	$\begin{aligned} & 7.22-7.81 \mathrm{~m}\left(11 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.92 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{\mathrm{Py}}\right), 8.18 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.59\right), \\ & 10.62 \mathrm{br} . \mathrm{s}(1 \mathrm{H}, \mathrm{NH}) \end{aligned}$
XIIa	$\begin{aligned} & 3190 \\ & 3342 \end{aligned}$	$\begin{aligned} & 1702 \\ & 1646 \end{aligned}$	5.41	$\begin{aligned} & 5.31 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.31-7.62 \mathrm{~m}\left(10 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.71 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{\mathrm{Py}}\right), 7.74-7.91 \mathrm{~m}(2 \mathrm{H}, \\ & \left.\mathrm{H}_{\mathrm{Ar}}\right), 8.19 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right) \end{aligned}$
XIIb	$\begin{aligned} & 3214 \\ & 3348 \end{aligned}$	$\begin{aligned} & 1714 \\ & 1647 \end{aligned}$	6.83	$3.77 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.11-7.85 \mathrm{~m}\left(13 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right), 8.23 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right)$
XIIC	$\begin{aligned} & 3228 \\ & 3332 \end{aligned}$	$\begin{aligned} & 1710 \\ & 1640 \end{aligned}$	5.71	3.79 br. s ($6 \mathrm{H}, 2 \mathrm{MeO}$), $7.12-7.83 \mathrm{~m}\left(8 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right), 8.19 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right)$
XIId	$\begin{aligned} & 3197 \\ & 3324 \end{aligned}$	$\begin{aligned} & 1715 \\ & 1646 \end{aligned}$	6.79	$\begin{aligned} & 2.41 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 3.76 \mathrm{~s}(3 \mathrm{H}, \mathrm{MeO}), 7.12-7.62 \mathrm{~m}\left(9 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.75 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 7.71\right), \\ & 7.81 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{\mathrm{Py}}\right), 8.21 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right) \end{aligned}$
XIIe	$\begin{aligned} & 3211 \\ & 3330 \end{aligned}$	$\begin{aligned} & 1718 \\ & 1648 \end{aligned}$	6.77	$3.78 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.13-7.65 \mathrm{~m}\left(9 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.74 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.56\right), 7.89 \mathrm{~s}(1 \mathrm{H}$, $\left.\mathrm{C}^{5} \mathrm{H}_{\mathrm{Py}}\right), 8.18 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$
XIIf	$\begin{aligned} & 3225 \\ & 3319 \end{aligned}$	$\begin{aligned} & 1717 \\ & 1647 \end{aligned}$	6.80	$3.80 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.19-7.98 \mathrm{~m}\left(17 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right), 8.20 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\text {Ar }}\right)$
XIIh	$\begin{aligned} & 3244 \\ & 3335 \end{aligned}$	1670	5.97	$3.76 \mathrm{~s}(3 \mathrm{H}, \mathrm{Me}), 7.12-7.83 \mathrm{~m}\left(12 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.23 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 9.66$ br. s $(1 \mathrm{H}, \mathrm{NH})$
XIIo	$\begin{aligned} & 2208 \\ & 3212 \\ & 3345 \end{aligned}$	1649	5.68	$7.23-7.68 \mathrm{~m}\left(6 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.79 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\text {Ar }}, J 7.51\right), 8.22 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$

of alkali was added. The reaction mixture was stirred again for 4 h and diluted with an equal volume of water. The resulting precipitate was filtered off, washed with water, ethanol, and hexane. The melting points and chromatographic characteristics of compounds XIIa-XIIg, XIIo are similar to those obtained by the method a (Tables 1 and 2).

REFERENCES

1. Dyachenko, V.D. and Chernega, A.N., Khim. Geterotsikl. Soed., 2005, no. 12, p. 1821.
2. March, J., Organic Chemistry. Reactions, Mechanisms, and Structure. New York; Chichester; Brisbane; Toronto; Singapore: J. Wiley\&Sons, 1986, vol. 2.
3. Krause, A.A., Kalme, Z.A., Pelcher, Yu.E., Liepin'sh, E.E., Dipan, I.V., and Dubur, G.Ya., Khim. Geterotsikl. Soed., 1983, no. 11, p. 1515.
4. Dyachenko, V.D., Doctoral (Chem.) Dissertation, Moscow, 1998.
5. Mermerian, A.H., Case, A., Stein, R.Z., and Cuny, G.D., Bioorg. Med. Chem. Lett., 2007, no. 17, p. 3729.
6. US Patent no. 5656 638, 1997; C. A. 1997, vol. 127, no. 220647x.
7. US Patent no. 856335, 1999; Ref. Zh. Khim., 1999, 17O69P.
8. Krause, A., Germane, S., Eberlins, O., Sturm, I., Klusa, V., and Duburs, G., Eur. J. Med. Chem., 1999, vol. 34, no. 4, p. 301.
9. Litvinov, V.P., Dotsenko, V.V., and Krivokolysko, S.T., Khimiya tienopiridinov i rodstvennykh system (Chemistry of thienopyridines and related systems), Moscow: Nauka, 2006, p. 6.
10. US Patent no. 6964956, 2005; Ref. Zh. Khim., 2006.06.14-19O69P.
11. Dyachenko, V.D., and Litvinov, V.P., Zh. Org. Khim., 1988, vol. 34, no. 4, p. 592.
12. Krause, A.A., Bomika, Z.A., Shestopalov, A.M., Rodinovskaya, L.A., Pelcher, Yu.E., Dubur, G.Ya., Sharanin, Yu.A., and Promonenkov, V.K., Khim. Geterotsikl. Soed., 1981, no. 3, p. 377.
