УДК 547.833.3

РЕГИОСЕЛЕКТИВНОЕ АЛКИЛИРОВАНИЕ ЗАМЕЩЁННЫХ 1*H*-ПИРАЗОЛО[3,4-*c*]ИЗОХИНОЛИН-1-ОНОВ

© С.М.Сукач, В.Д.Дяченко[®]

Луганский национальный университет им. Тараса Шевченко 91011, Луганск, ул. Оборонная, 2; e-mail: dyachvd@mail.ru Поступила 14 января 2015 г.

Замещённые 1H-пиразоло[3,4-c]изохинолин-1-оны образуются при конденсации 2-ацетилциклогексанонов с 3-амино-1-фенил-1H-пиразол-5-оном [1] или по реакции нуклеофильного винильного замещения (S_NVin) при взаимодействии 1-[2-(морфолин-4-ил)-циклогексил[3-[2]-[3

Нами найдено, что в зависимости от условий алкилирования можно получать как N^4 -, так и C^I О-алкилпроизводные пиразоло[3,4-c]изохинолинов **1a, b**, т.е.

синтез становится региоуправляемым. Соединения ${\bf 1a}$, ${\bf b}$, для которых вклад цвиттер-ионной структуры ${\bf A}$ в строение молекулы, по данным РСА, значителен [1], в ДМФА в присутствии водного раствора КОН образуют, по-видимому, анион ${\bf Б}$, который способен к прототропной таутомерии, приводящей к новому аниону ${\bf B}$. Внесение в реакционную смесь алкилгалогенидов ${\bf 2a}$, ${\bf b}$ заканчивается образованием N^4 -алкилпроизводных пиразоло[3,4-c]изохинолинов ${\bf 3a}$ - ${\bf c}$.

Замена водного раствора щелочи на супероснование [3] (раствор безводного КОН в ДМСО) при соблюдении остальных условий изменяет направление алкилирования и приводит к C^I О-бензилпроизводному 4. Исследуется механизм данной реакции и границы ее применимости.

1, R = Ph (a), фуран-2-ил (b); 2, BnCl (a), IMe (b); 3, R = Ph, R' = PhCH₂ (a); R = фуран-2-ил, R' = PhCH₂ (b); R = фуран-2-ил, R' = Me (c).

Замещенные N^4 -алкилпиразоло[3,4-c]изохинолин-1-оны (3а-c). Общая методика. К раствору 2 ммоль пиразолоизохинолина 1a, b в 10 мл ДМФА при перемешивании при 20°C прибавляли 1.12 мл

 $(2\,$ ммоль) 10%-ного водного раствора КОН и $2\,$ ммоль алкилгалогенида 2a, b. Реакционную смесь при перемешивании нагревали $30\,$ мин до 50° С и оставляли на $2\,$ сут, затем разбавляли равным объе-

920

мом воды и оставляли на сутки. Образовавшийся осадок отфильтровывали, промывали этанолом и гексаном.

7-Ацетил-4-бензил-8-гидрокси-5,8-диметил-2,6дифенил-2H-6,7,8,9-тетрагидропиразоло[3,4-c]**изохинолин-1(4H)-он (3a)**. Выход 0.55 г (63%), белый порошок, т.пл. 198°С (AcOH). ИК спектр, v, см⁻¹: 3419 (OH), 1689, 1673 (C=O). Спектр ЯМР ¹H, δ, м.д.: 1.24 с (3H, CH₃), 2.08 с (3H, CH₃), 2.10 с (3H, CH_3), 2.89 д (1H, H^7 , J 10.0 Γ ц), 3.03 д (1H, H^9 , ^{2}J 18.1 Гц), 3.46 д (1H, H 9 , ^{2}J 18.1 Гц), 4.53 д (2H, H 6 и ОН, J 9.4 Гц), 4.78 д (1H, NCH₂, ²J 14.9 Гц), 5.15 д (1H, NCH₂, 2 *J* 14.9 Гц), 6.75 д (2H_{аром.}, *J* 7.2 Гц), 6.97 д $(2H_{\rm apom.},\ J\ 7.1\ \Gamma$ ц), 7.11 т $(2H_{\rm apom.},\ J\ 7.2\ \Gamma$ ц), 7.18 т (2Наром., Ј 6.9 Гц), 7.25 т (2Наром., Ј 7.2 Гц), 7.35 д $(1{\rm H}_{\rm apom.},\ J\ 7.1\ \Gamma$ ц), 7.44 д $(2{\rm H}_{\rm apom.},\ J\ 7.6\ \Gamma$ ц), 7.53 т (2Н_{аром.}, J 7.4 Гц). Масс-спектр, m/z (I_{отн.}, %): 517 (87) $[M]^+$, 516 (42) $[M - H]^+$, 499 (7) $[M - H_2O]^+$, 474 (8) $[M - CH_3C = O]^+$, 455 (28) $[M - H - CH_3C = O - H_2O]^+$, 425 (33) $[M - PhCH_2]^+$, 383 (10), 365 (42) $[M - CH_3C = O - H_2O - PhCH_2]^+$, 91 (84) $[PhCH_2]^+$, 77 (46) [Ph]⁺, 44 (100) [CH₃C=OH]⁺. Найдено, %: С 76.50; Н 5.89; N 7.99. С₃₃Н₃₁N₃O₃. Вычислено, %: C 76.57; H 6.04; N 8.12.

7-Ацетил-4-бензил-8-гидрокси-5,8-диметил-2фенил-6-(фуран-2-ил)-2H-6,7,8,9-тетрагидропиразоло[3,4-c]изохинолин-1(4H)-он (3b). Выход 0.35 г (58%), белый порошок, т.пл. 160°С (BuOH). ИК спектр, v, см⁻¹: 3420 (ОН), 1709, 1679 (С=О). Спектр ЯМР ¹H, δ, м.д.: 1.22 с (3H, CH₃), 2.22 с (3H, CH_3), 2.78 с (3H, CH_3), 2.98–3.04 м (2H, H^7 и H^9), 3.37 д (1H, H⁹, 2J 18.1 Гц), 4.66 д (1H, H⁶, J 8.6 Гц), 4.71 ш.с (1H, OH), 4.82 д (1H, NCH₂, 2J 15.0 Гц), 5.15 д (1H, NCH₂, ${}^{2}J$ 15.0 Гц), 5.91 с (1H, H³ фурана), 6.31 с (1H, H^4 фурана), 6.76 д (2 $\mathrm{H}_{\mathrm{аром.}}$, J 7.7 Γ ц), 7.11 т $(2H_{\text{аром.}}, J 7.4 \Gamma \text{ц}), 7.18 т (1H_{\text{аром.}}, J 7.3 \Gamma \text{ц}), 7.33 т$ $(1H_{\text{аром.}}, J 7.3 \Gamma II), 7.39–7.43 м (3H, 2H_{\text{аром.}}$ и H^5 фурана), 7.52 т (2H, $H_{\text{аром.}}$, J 7.6 Γ ц). Масс-спектр, m/z ($I_{\text{отн.}}$, %): 508 (100) $[M + H]^+$. Найдено, %: С 73.20; Н 5.48; N 8.14. С₃₁H₂₉N₃O₄. Вычислено, %: С 73.35; Н 5.76; N 8.28.

7-Ацетил-8-гидрокси-4,5,8-триметил-2-фенил-6-(фуран-2-ил)-2H-6,7,8,9-тетрагидропиразоло-[3,4-c]изохинолин-1(4H)-он (3c). Выход 0.38 г (73%), красный порошок, т.пл. 235°С (АсОН). ИК спектр, v, см $^{-1}$: 3392 (ОН), 1709 (С=О). Спектр ЯМР 1 Н, δ , м.д.: 1.28 с (3H, CH $_{3}$), 2.17 с (3H, CH $_{3}$), 2.22 с (3H, CH $_{3}$), 3.07–3.22 м (5H, H 7 , H 9 , NCH $_{3}$), 3.54 д (1H, H 9 , 2 2 J 17.9 Гц), 4.59 д (1H, H 6 , J 8.0 Гц), 4.79 ш.с (1H, OH), 5.96 с (1H, H 3 фурана), 6.30 с (1H, H 4 фурана), 7.15 т (1H, H $_{\rm аром.}$, J 7.1 Гц), 7.41 т (3H, Н $_{\rm аром.}$, J 6.9 Гц), 7.95–8.02 м (2H, 1H $_{\rm аром.}$ и H^{5} фурана).

Масс-спектр, m/z ($I_{\text{отн.}}$, %): $[M]^+$ отсутствует, 361 (38), 360 (100), 359 (90), 276 (11), 180 (7), 84 (10). Найдено, %: С 69.48; H 5.70; N 9.65. $C_{25}H_{25}N_3O_4$. Вычислено, %: С 69.59; H 5.84; N 9.74.

1-(1-Бензилокси-8-гидрокси-5,8-диметил-2,6дифенил-2H-6,7,8,9-тетрагидропиразоло[3,4-c]изохинолин-7-ил) этанон (4) получали аналогично соединениям 3, используя в качестве растворителя 10 мл ДМСО, 0.06 г (1 ммоль) КОН и 0.12 мл (1 ммоль) бензилхлорида 2а. Выход 0.4 г (77%), желтый порошок, т.пл. 160-162°С (EtOH). ИК спектр, v, cm⁻¹: 3422 (OH), 1687 (C=O). Cπεκτρ ЯМР ¹H, δ, м.д.: 1.42 с (3H, CH₃), 2.08 с (3H, CH₃), 2.32 с (3H, CH_3), 2.67–2.73 м (2H, H^7 и H^9), 3.75 д (1H, H^9 , ^{2}J 18.2 Гц), 4.72–4.86 м (2H, H 6 и OH), 5.11 д (1H, OCH_2 , ²J 14.5 Γ ц), 5.28 д (1H, OCH_2 , ²J 14.5 Γ ц), 6.72– 7.48 м (15H, H_{аром}). Спектр ЯМР ¹³С, δ, м.д.: 19.48, 20.41, 21.22, 34.58, 44.02, 45.79, 65.72, 70.04, 95.63, 115.23, 116.41, 118.83, 119.55, 120.87, 125.80, 127.29 (4C), 127.54, 129.15, 129.30 (4C), 129.59, 135.15, 142.66, 144.60, 144.86, 145.91, 148.73, 209.57 (CH₃CO). Масс-спектр, m/z ($I_{\text{отн}}$, %): 519 (16) $[M + 2H]^+$, 474 (2) $[M - CH_3C=O]^+$, 457 (27) $[M - H - H_2O - CH_3C=O]^+$, 366 (21) $[M + H - H_2O - CH_3C=O - PhCH_2]^+$, 276 (27), 199 (8), 105 (17), 91 (100) [PhCH₂]⁺, 79 (9), 77 $(41) [Ph]^+, 65 (13), 44 (30) [CH_3C=OH]^+, 33 (37) [H_2O+$ СН₃]⁺. Найдено, %: С 76.42; Н 5.92; N 7.95. С₃₃H₃₁N₃O₃. Вычислено, %: С 76.57; Н 6.04; N 8.12.

ИК спектры соединений записывали на приборе FIR-spectrometer Spectrum One (Perkin Elmer) в таблетках КВг. Спектры ЯМР ¹Н и ¹³С регистрировали на приборе Bruker Avance 400 (399.95 и 100 МГц соответственно) в ДМСО- d_6 , внутренний стандарт – ТМС. Масс-спектры снимали на спектрометрах МХ-1321 (70 эВ) с прямым вводом вещества в ионный источник (для соединений **3a, c, 4**) и Agilent 1100 Series с селективным детектором Agilent LS/MSDSL (образец вводили в матрице СГ₃СООН, ионизация ЭУ) (для соединения 3b). Элементный анализ проводили на приборе Perkin Elmer CHN-analyser. Температуры плавления определяли на блоке Кофлера. Ход реакций и чистоту полученных соединений контролировали методом TCX на пластинах Silufol UV-254, элюент – смесь ацетон–гексан, 3:5, проявители – пары иода и УФ облучение.

Список литературы

- 1. Дяченко В.Д., Сукач С.М. ЖОХ. 2012, 82, 310.
- 2. Дяченко И.В., Русанов Э.Б., Вовк М.В. *ЖОрХ*. **2013**, *49*, 1379.
- 3. Пожарский А.Ф., Озерянский В.А., Филатова Е.А. *XTC*. **2012**, 208.