Synthesis of 2-(4'-Morpholin-4'-yl-5H-chromeno-[2,3-d] pyrimidin-2'-yl)phenol from Salicylaldehyde and Substituted Acrylonitriles

V. D. Dyachenko and Yu. Yu. Pugach
Shevchcenko Lugansk National University, ul. Oboronnaya, 2, Lugansk, 91011 Ukraine
e-mail:dvd_lug@online.lg.ua

Received March 10, 2011

Abstract

The synthesis of 2-(4'-morpholin-4"-yl-5H-chromeno[2,3-d]pyrimidin-2'-yl)phenol was performed via the reaction of salicylaldehyde with the substituted acrylonitriles. Its structure was confirmed by the X-ray analysis.

DOI: 10.1134/S1070363212050209

Some of the fused pyrimidine derivatives are biologically active compounds. In particular, they exhibit anticancer, antimicrobial, anticoagulation [1-3], neuroprotective [4], antiviral [5] and fungicidal [6] activity. In this regard, developing simple and efficient
synthetic approach to the compounds of this class is promising.

In this work we studied the condensation of salicylaldehyde Ia with cyclohexylidene malononitrile

Scheme 1.

II and morpholine III at $20^{\circ} \mathrm{C}$ in ethanol resulting in 2-(4'-morpholin-4"-yl-5H-chromeno[2,3- d]pyrimidin-2'yl)phenol (method a, Scheme 1). Compound IV has been obtained earlier via the three-component condensation of salicylaldehyde, malonodinitrile and morpholine in ethanol in the presence of LiClO_{4} [7], as well as under microwave irradiation using the same reagents at $100^{\circ} \mathrm{C}$ for 3-6 min [8].

The formation of heterocyclic ring system IV proceeds probably through the forming adduct \mathbf{V} and oxetane VI. The latter is converted into alkene VII with cyclohexanone elimination followed by the intramolecular cyclization into 2-iminobenzopyran VIII. Further a nucleophilic addition occurs of morpholine to the nitrile group and the formation of derivative IX, which reacts with salicylaldehyde Ia to give a tricyclic system X. Under the reaction conditions the latter undergoes a prototropic tautomerisation with the aromatization of the pyrimidine ring to afford heterocyclic system IV. The replacement of cyclohexylidene malononitrile II with benzalmalononitrile XI (method b) or with ethoxymethylene malononitrile XII (method c) does not change the condensation direction: compound IV is formed. The reaction proceeds apparently similar to that in the method a.

The structure of compound IV was established by the X-ray diffraction analysis (see the figure, Tables 1,2). The symmetrically independent part of the unit cell contains two molecules A and B of compound IV. They differ by the 4 H -pyran ring conformation and the orientation of the morpholine moiety relative to the tricyclic fragment. In the molecule A the pyran ring is flat, while in the molecule B this ring has a flattened

General view of the molecule of IV according to the X-ray diffraction data.

Table 1. Bond lengths (\AA) in structure IV

Bond	A	B
$\mathrm{O}^{1}-\mathrm{C}^{9}$	$1.358(3)$	$1.361(3)$
$\mathrm{O}^{1}-\mathrm{C}^{6}$	$1.381(3)$	$1.392(3)$
$\mathrm{O}^{2}-\mathrm{C}^{13}$	$1.341(4)$	$1.343(3)$
$\mathrm{O}^{3}-\mathrm{C}^{19}$	$1.407(4)$	$1.418(4)$
$\mathrm{O}^{3}-\mathrm{C}^{20}$	$1.411(3)$	$1.398(3)$
$\mathrm{N}^{1}-\mathrm{C}^{9}$	$1.332(3)$	$1.331(3)$
$\mathrm{N}^{1}-\mathrm{C}^{10}$	$1.333(3)$	$1.337(3)$
$\mathrm{N}^{2}-\mathrm{C}^{10}$	$1.327(3)$	$1.335(3)$
$\mathrm{N}^{2}-\mathrm{C}^{11}$	$1.342(3)$	$1.345(3)$
$\mathrm{N}^{3}-\mathrm{C}^{11}$	$1.384(3)$	$1.368(3)$
$\mathrm{N}^{3}-\mathrm{C}^{21}$	$1.457(3)$	$1.450(3)$
$\mathrm{N}^{3}-\mathrm{C}^{18}$	$1.468(3)$	$1.465(3)$
$\mathrm{C}^{1}-\mathrm{C}^{2}$	$1.376(4)$	$1.384(4)$
$\mathrm{C}^{1}-\mathrm{C}^{6}$	$1.384(3)$	$1.386(4)$
$\mathrm{C}^{1}-\mathrm{C}^{7}$	$1.495(3)$	$1.500(3)$
$\mathrm{C}^{2}-\mathrm{C}^{3}$	$1.380(4)$	$1.378(4)$
$\mathrm{C}^{3}-\mathrm{C}^{4}$	$1.371(4)$	$1.374(4)$
$\mathrm{C}^{4}-\mathrm{C}^{5}$	$1.368(4)$	$1.366(4)$
$\mathrm{C}^{5}-\mathrm{C}^{6}$	$1.382(3)$	$1.383(4)$
$\mathrm{C}^{7}-\mathrm{C}^{8}$	$1.500(3)$	$1.508(4)$
$\mathrm{C}^{8}-\mathrm{C}^{9}$	$1.385(3)$	$1.385(3)$
$\mathrm{C}^{8}-\mathrm{C}^{11}$	$1.412(3)$	$1.409(3)$
$\mathrm{C}^{10}-\mathrm{C}^{12}$	$1.476(4)$	$1.478(4)$
$\mathrm{C}^{12}-\mathrm{C}^{17}$	$1.394(4)$	$1.402(4)$
$\mathrm{C}^{12} \mathrm{C}^{13}$	$1.408(4)$	$1.396(3)$
$\mathrm{C}^{13}-\mathrm{C}^{14}$	$1.375(4)$	$1.375(4)$
$\mathrm{C}^{14}-\mathrm{C}^{15}$	$1.367(5)$	$1.361(4)$
$\mathrm{C}^{15}-\mathrm{C}^{16}$	$1.373(5)$	$1.377(4)$
$\mathrm{C}^{16}-\mathrm{C}^{17}$	$1.378(4)$	$1.371(4)$
$\mathrm{C}^{18}-\mathrm{C}^{19}$	$1.473(4)$	$1.485(4)$
$\mathrm{C}^{20}-\mathrm{C}^{21}$	$1.445(4)$	$1.505(4)$

boat conformation with a deviation of the O^{1} and C^{7} atoms from the plane of other atoms in the ring by $0.117(4)$ and $0.142(4) \AA$ respectively. The nitrogen atom N^{3} of morpholine ring in both molecules have a pyramidal conformation [sum of the bond angles centered on the atom are $350.6(2)$ and $355.1(2)^{\circ}$ in the A and B molecules, respectively]. In the A molecule the tricyclic fragment ($\mathrm{N}^{3}-\mathrm{C}^{11}$ bond) has an equatorial orientation relative to the morpholine ring, and in the B molecule, axial orientation [torsion angle $\mathrm{C}^{19} \mathrm{C}^{18} \mathrm{~N}^{3} \mathrm{C}^{11}$ is $162.6(3)^{\circ}$ in the A molecule and $-103.0(3)^{\circ}$ in the B molecule). A lesser degree of the N^{3} atom pyramidality in the B molecule results in a shorter $\mathrm{N}^{3}-\mathrm{C}^{11}$ bond, 1.368(3) \AA [in the A molecule this bond length is 1.384(3) $\AA]$. In both molecules there is a much
shortened intramolecular $\mathrm{C}^{21}-\mathrm{H} \cdots \mathrm{H}-\mathrm{C}^{7}$ contact $\{1.88 \AA$ (A), $1.99 \AA$ (B), the sum of the van der Waals radii is $2.32 \AA[9]\}$. The resulting steric strain is compensated by the conjugation between the lone electrons pair of the N^{3} atom and π-system of the pyridine ring [torsion angle $\mathrm{LpN}^{3} \mathrm{~N}^{3} \mathrm{C}^{11} \mathrm{C}^{8}-65^{\circ}(\mathrm{A}),-59^{\circ}(\mathrm{B})$, where LpN^{3} is an idealized location of the lone electrons pair of the N^{3} atom]. Apparently, the difference in the relative orientation of the tricyclic fragment of morpholine ring causes the $4 H$-pyran ring nonplanarity in the B molecule. The high conformational flexibility of the heterocycle [10], especially in the polycyclic systems [11], can reduce the steric strain in the molecule due to the ring bending, as evidenced by the significantly greater $\mathrm{C}^{21}-\mathrm{H} \cdots \mathrm{H}-\mathrm{C}^{7}$ distance in the B molecule.
o-Hydroxyphenyl moiety is virtually coplanar with the pyrimidine ring [the torsion angle $\mathrm{N}^{1} \mathrm{C}^{10} \mathrm{C}^{12} \mathrm{C}^{13}$ is $4.6(4)^{\circ}$ and $6 .(4)^{\circ}$ in molecules A and B, respectively] due to the formation of intramolecular hydrogen $\mathrm{O}^{2}-$ $\mathrm{H} \cdots \mathrm{N}^{1}$ bond $[\mathrm{H} \cdots \mathrm{N} 1.86$ (A), $1.87 \AA(\mathrm{~B}), \mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ 147°]. In this regard, there is also some shortening of the $\mathrm{C}^{13}-\mathrm{O}^{2}$ bond to $1.341(4)(\mathrm{A})$ and $1.343(3) \AA(\mathrm{B})$ compared with the average value ($1.36 \AA$) [12].

The quantum chemical calculations of the isolated A and B molecules by a B3LYP/def2-TZVP method revealed that both orientations of the morpholine substituent in the molecule of IV correspond to minima on the potential energy surface. In general, the geometric parameters of the molecules obtained from the calculations are close to those observed in the crystal. However, in both conformers of the isolated compound IV there is a significant and almost equal flattening of the 4 H -pyran ring - the deviations of the O^{1} and C^{7} atoms from the plane of the remaining ring atoms are 0.18 and $0.23 \AA$, respectively. The morpholine moiety orientation does not essentially differ from that found experimentally (the sum of bond angles centered on the N^{1} atom differ by less than 3°, and torsion angles $\mathrm{LpN}^{3} \mathrm{~N}^{3} \mathrm{C}^{11} \mathrm{C}^{8}$ by less than 15°), which also leads to the formation of the greatly shortened $\mathrm{C}^{21}-\mathrm{H} \cdots \mathrm{H}-\mathrm{C}^{7}$ contacts in the A conformer $(2.00 \AA)$ and B conformer ($1.96 \AA$). Thus, we can conclude that the $4 H$-pyran ring flattening and the formation of the strongly shortened $\mathrm{H} \cdots \mathrm{N}$ contacts are due the intramolecular interactions rather than the packing effects in the crystal. According to the calculations the A conformer is more preferable by $0.24 \mathrm{~J} \mathrm{~mol}^{-1}$.

In the crystal the molecules form AB type dimers due to the stacking interactions between the tricyclic

Table 2. Bond angles (deg) in structure IV

Angle	A	B
$\mathrm{C}^{9} \mathrm{O}^{1} \mathrm{C}^{6}$	119.75(19)	118.85(19)
$\mathrm{C}^{19} \mathrm{O}^{3} \mathrm{C}^{20}$	109.3(2)	109.4(2)
$\mathrm{C}^{9} \mathrm{~N}^{1} \mathrm{C}^{10}$	115.7(2)	116.0(2)
$\mathrm{C}^{10} \mathrm{~N}^{2} \mathrm{C}^{11}$	118.3(2)	117.9(2)
$\mathrm{C}^{11} \mathrm{~N}^{3} \mathrm{C}^{21}$	123.9(2)	124.5(2)
$\mathrm{C}^{11} \mathrm{~N}^{3} \mathrm{C}^{18}$	117.0(2)	119.9(2)
$\mathrm{C}^{21} \mathrm{~N}^{3} \mathrm{C}^{18}$	109.7(2)	110.7(2)
$\mathrm{C}^{2} \mathrm{C}^{1} \mathrm{C}^{6}$	117.1(2)	117.2(2)
$\mathrm{C}^{2} \mathrm{C}^{1} \mathrm{C}^{7}$	121.1(2)	121.5(2)
$\mathrm{C}^{6} \mathrm{C}^{1} \mathrm{C}^{7}$	121.7(2)	121.2(3)
$\mathrm{C}^{1} \mathrm{C}^{2} \mathrm{C}^{3}$	121.5(3)	121.6(3)
$\mathrm{C}^{4} \mathrm{C}^{3} \mathrm{C}^{2}$	120.1(3)	119.7(3)
$\mathrm{C}^{5} \mathrm{C}^{4} \mathrm{C}^{3}$	119.8(3)	120.3(3)
$\mathrm{C}^{4} \mathrm{C}^{5} \mathrm{C}^{6}$	119.4(3)	119.5(3)
$\mathrm{O}^{1} \mathrm{C}^{6} \mathrm{C}^{5}$	116.3(2)	116.4(2)
$\mathrm{O}^{1} \mathrm{C}^{6} \mathrm{C}^{1}$	121.7(2)	121.9(2)
$\mathrm{C}^{5} \mathrm{C}^{6} \mathrm{C}^{1}$	122.0(3)	121.8(3)
$\mathrm{C}^{1} \mathrm{C}^{7} \mathrm{C}^{8}$	113.0(2)	112.3(2)
$\mathrm{C}^{9} \mathrm{C}^{8} \mathrm{C}^{11}$	113.7(2)	114.0(2)
$\mathrm{C}^{9} \mathrm{C}^{8} \mathrm{C}^{7}$	120.0(2)	120.2(2)
$\mathrm{C}^{11} \mathrm{C}^{8} \mathrm{C}^{7}$	126.3(2)	125.4(2)
$\mathrm{N}^{1} \mathrm{C}^{9} \mathrm{O}^{1}$	110.7(2)	111.4(2)
$\mathrm{N}^{1} \mathrm{C}^{9} \mathrm{C}^{8}$	125.4(2)	125.1(2)
$\mathrm{O}^{1} \mathrm{C}^{9} \mathrm{C}^{8}$	123.9(2)	123.5(2)
$\mathrm{N}^{2} \mathrm{C}^{10} \mathrm{~N}^{1}$	125.2(2)	124.9(2)
$\mathrm{N}^{2} \mathrm{C}^{10} \mathrm{C}^{12}$	117.2(2)	117.2(2)
$\mathrm{N}^{1} \mathrm{C}^{10} \mathrm{C}^{12}$	117.6(2)	117.9(2)
$\mathrm{N}^{2} \mathrm{C}^{11} \mathrm{~N}^{3}$	114.2(2)	115.3(2)
$\mathrm{N}^{2} \mathrm{C}^{11} \mathrm{C}^{8}$	121.7(2)	121.9(2)
$\mathrm{N}^{3} \mathrm{C}^{11} \mathrm{C}^{8}$	124.1(2)	122.6(2)
$\mathrm{C}^{17} \mathrm{C}^{12} \mathrm{C}^{13}$	118.0(3)	117.8(3)
$\mathrm{C}^{17} \mathrm{C}^{12} \mathrm{C}^{10}$	119.7(3)	122.4(3)
$\mathrm{C}^{13} \mathrm{C}^{12} \mathrm{C}^{10}$	122.2(3)	119.9(2)
$\mathrm{O}^{2} \mathrm{C}^{13} \mathrm{C}^{14}$	117.6(3)	116.4(3)
$\mathrm{O}^{2} \mathrm{C}^{13} \mathrm{C}^{12}$	122.5(3)	122.9(3)
$\mathrm{C}^{14} \mathrm{C}^{13} \mathrm{C}^{12}$	119.9(3)	120.7(3)
$\mathrm{C}^{15} \mathrm{C}^{14} \mathrm{C}^{13}$	121.2(3)	120.4(3)
$\mathrm{C}^{14} \mathrm{C}^{15} \mathrm{C}^{16}$	119.7(3)	120.5(3)
$\mathrm{C}^{15} \mathrm{C}^{16} \mathrm{C}^{17}$	120.5(4)	119.9(3)
$\mathrm{C}^{16} \mathrm{C}^{17} \mathrm{C}^{12}$	120.7(3)	120.8(3)
$\mathrm{N}^{3} \mathrm{C}^{18} \mathrm{C}^{19}$	111.6(3)	111.7(3)
$\mathrm{O}^{3} \mathrm{C}^{19} \mathrm{C}^{18}$	113.9(3)	110.9(3)
$\mathrm{O}^{3} \mathrm{C}^{20} \mathrm{C}^{21}$	113.6(3)	113.0(3)
$\mathrm{C}^{20} \mathrm{C}^{21} \mathrm{~N}^{3}$	113.2(3)	109.7(3)

systems (the shortest $\mathrm{C}^{9 \mathrm{~A}} \ldots \mathrm{C}^{2 \mathrm{~B}^{\prime}}$ distance $[1-x, 0.5+y$, $0.5-z$] is $3.35 \AA$, the angle between the planes of the pyrimidine and benzene rings is 12°). The adjacent dimers are linked by the $\mathrm{C}-\mathrm{H} \cdots \pi$ hydrogen bonds $\mathrm{C}^{16 \mathrm{~A}}-\mathrm{H}^{\cdots} \mathrm{C}^{4 \mathrm{~A}^{\prime}}[-1+x, 0.5-y, 0.5+z]\left(\mathrm{H}^{\cdots} \mathrm{C} 2.86 \AA\right.$, $\left.\mathrm{C}-\mathrm{H} \cdots \mathrm{C} 15^{\circ}\right)$.

The condensation of o-hydroxy substituted aromatic aldehydes Ia, Ib with CH-acids XIIa, XIIb in ethanol at $20^{\circ} \mathrm{C}$ in the presence of morpholine III is completed at the stage of the formation of coumarin derivatives XIVa, XIVb. The reaction occurs probably via the formation of product XV of Knoevenagel condensation followed by the intramolecular acylation to give chromene system XIV. The condensation of
compound XIVa with p-chlorophenacyl bromide XVI in DMF at $20^{\circ} \mathrm{C}$ results in the Hantzsch thiazole XVII (method a), which is synthesized also in the reaction of saliylcylaldehyde Ia with CH-acid XIII (method b). In the reaction the corresponding Knoevenagel adduct XIX probably forms, which undergoes the intramolecular cyclization into substituted 3-[4'-(4"-chloro-phenyl)thiazol-2'-yl]-2H-chromen-2-one

XVII (Scheme 2).

The condensation of salicylaldehyde Ia with cyanoselenoacetamide XX under Knoevenagel reaction conditions did not stop at the stage of the formation of corresponding alkene XXI, and the pyran ring closure proceeds to give 2 -oxo- 2 H -chromeno-3-carboselen-

Scheme 2.

$\mathbf{I}, \mathrm{R}=\mathrm{R}^{1}=\mathrm{H}(\mathbf{a}), \mathrm{R}=\mathrm{R}^{1}=\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}(\mathbf{b}) ; \mathbf{X I I I}, \mathrm{R}^{2}=\mathrm{OEt}(\mathbf{a}), \mathrm{NH}_{2}(\mathbf{b}) ; \mathbf{X I V}, \mathrm{R}=\mathrm{R}^{1}=\mathrm{H}, \mathrm{Y}=\mathrm{O}(\mathbf{a}), \mathrm{R}=\mathrm{R}^{1}=\mathrm{CH}=\mathrm{CH}-$ $\mathrm{CH}=\mathrm{CH}, \mathrm{Y}=\mathrm{NH}(\mathbf{b})$.
amide XXII. The latter enters easily into the Hantzsch condensation with phenacyl bromide XXIII in DMF at $20^{\circ} \mathrm{C}$ to form the corresponding 3 -selenazolyl-substituted 2-iminocoumarin XXIV. We failed to be identify the latter due to its rapid hydrolysis under the reaction conditions to give 3-(4-phenyl-1,3-selenazol2 -yl)-2H-chromen-2-one XXV (method a). It is also formed by the condensation of salicylaldehyde Ia with a substituted selenazole XXVI (method b).

EXPERIMENTAL

The crystals of IV are monoclinic, $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$, at $298 \mathrm{~K}: a 17.9785(6), b$ 9.9722(4), $c 20.5412(7) \AA, \beta$ 106.126(4) ${ }^{\circ}, V 3537.8(2) \AA^{3}, M 361.39, Z 8$, space group $P 21 / c, d_{\text {calc }} 1.36 \mathrm{~g} \mathrm{~cm}^{-3}, \mu\left(\mathrm{Mo}_{\alpha}\right) 0.093 \mathrm{~mm}^{-1}$, $F(000)$ 1520. The unit cell parameters and intensities of 33782 reflections (6217 independent, $R_{\text {int }} 0.049$) were measured on a Xcalibur 3 four-circle automatic diffractometer (Mo_{α}, graphite monochromator, CCDdetector, ω-scanning, $2 \theta_{\text {max }} 50^{\circ}$).

The structure of IV was solved by the direct method using SHELX-97 software [13]. The positions of hydrogen atoms were found from a difference synthesis of electron density and refined by a rider model with $U_{\text {iso }}=n U_{\text {eq }}$ of the carrier atom ($n=1.5$ for the hydroxy groups and $n=1.2$ for the remaining hydrogen atoms). The structure was refined with respect to F^{2} by the full-matrix least-squares method in the anisotropic approximation for the non-hydrogen atoms to $w R_{2} 0.172$ for 6217 reflections ($R_{1} 0.056$ for 3633 reflections with $F>4 \sigma(F), S 1.03)$. The bond lengths and angles are given in Tables 1 and 2.

The optimization of the geometrical parameters of the isolated conformers by a B3LYP/def2-TZVP method was performed using an Orca 2.8.0 program package [14].

The melting points were determined on a Koeffler block. The IR spectra were obtained on a FIR Spectrum One (Perkin-Elmer) instrument from KBr pellets. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded on a Bruker Avance II 400 instrument (399.9601 MHz) in DMSO- d_{6} relative to internal TMS. The mass spectra were registered on a MX-1321 spectrometer (70 eV) using the direct injection of a sample into the ion source. The reaction progress and the compounds purity were monitored by the TLC method on Silufol UV-254 plates eluting with an acetone-hexane mixture (3:5) and detecting with iodine vapor and UV irradiation.

2-(4'-Morpholin-4'-yl-5H-chromeno[2,3-d]pyri-midin-2'-yl)phenol (IV). a. A mixture of 2.14 ml (20 mmol) of salicylaldehyde $\mathbf{I a}, 0.87 \mathrm{ml}(10 \mathrm{mmol})$ of morpholine III, and $1.46 \mathrm{~g}(10 \mathrm{mmol})$ of cyclohexylidene malonitrile II in 20 ml of ethanol at $20^{\circ} \mathrm{C}$ was stirred for 1 h and left standing for 48 h . The resulting precipitate was filtered off, washed with ethanol and hexane. Yield 2.6 g (72%), yellow crystals, mp $205-208^{\circ} \mathrm{C}$ (EtOH) $\left(210^{\circ} \mathrm{C}\right.$ [8]). IR spectrum, $v, \mathrm{~cm}^{-1}: 3445(\mathrm{OH}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $3.52 \mathrm{t}\left(4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NCH}_{2}, J 4.0 \mathrm{~Hz}\right), 3.80 \mathrm{t}(4 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{OCH}_{2}, J 4.0 \mathrm{~Hz}\right), 4.01 \mathrm{~s}\left(2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.93 \mathrm{t}(2 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{Ar}}, J 8.0 \mathrm{~Hz}\right), 7.11-7.20 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.27 \mathrm{t}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right.$, $J 8.0 \mathrm{~Hz}), 7.33-7.41 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 8.27 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J\right.$ $8.0 \mathrm{~Hz}), 13.11 \mathrm{br} . \mathrm{s}(1 \mathrm{H}, \mathrm{OH}) .{ }^{13} \mathrm{C}$ NMR spectrum, δ_{C}, ppm: 24.99, 48.01, 65.88, 97.56, 116.24, 117.30, $117.99,118.78,119.82,124.52,128.05,128.59$, $128.96,132.84,159.69,160.49,163.98$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 361$ (100) $[M]^{+}, 304$ (28), 275 (14), 248 (5), 155 (11), 128 (13), 86 (24) [morpholinyl] ${ }^{+}$. Found, \%: C 69.68; H 5.24; N 11.52. $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{3}$. Calculated, \%: C 69.79; H 5.30; N 11.63.
b. Similarly to the method a using $1.54 \mathrm{~g}(10 \mathrm{mmol})$ of compound IX. Yield $2.78 \mathrm{~g}(77 \%)$.
c. Similarly to the method a using $1.5 \mathrm{~g}(10 \mathrm{mmol})$ of compound XII. Yield $2.67 \mathrm{~g}(74 \%)$.

2-Oxo-2H-chromene-3-carbothioamide (XIVa). A mixture of $7.1 \mathrm{ml}(10 \mathrm{mmol})$ of salicylaldehyde Ia and $1.47 \mathrm{~g}(10 \mathrm{mmol})$ of CH-acid XIIIa in 15 ml of DMF at $20^{\circ} \mathrm{C}$ was stirred for 5 h , kept for 48 h , diluted with 10% hydrochloric acid to pH 5 , and allowed to stand for 1 day. The resulting precipitate was filtered off, washed with ethanol and hexane. Yield 1.58 g $(77 \%), \mathrm{mp} 242-244^{\circ} \mathrm{C}(\mathrm{AcOH})\left(240^{\circ} \mathrm{C}[15]\right)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 205(82)[M]^{+}, 172$ (100) $[M-$ $\mathrm{SH}]^{+}, 88$ (15), 63 (12), 45 (4), 39 (7). When CH-acid XIIIb was used instead of compound XIIIa, the yield was $1.46 \mathrm{~g}(71 \%)$.

3-Imino-3H-benzo $[f]$ chromene-2-carbothioamide (XIVb). A mixture of $1.72 \mathrm{~g}(10 \mathrm{mmol})$ of β-hyd-roxynaphthalene-3-carbaldehyde $\mathbf{I b}, 1.47 \mathrm{~g}(10 \mathrm{mmol})$ of CH-acid XIIIa and 3 drops of morpholine III in 20 ml of ethanol was stirred for 3 h and kept for 1 day. The resulting precipitate was filtered off, washed with ethanol and hexane. Yield $8.2 \mathrm{~g}(82 \%), \mathrm{mp} 183-184^{\circ} \mathrm{C}$ (DMF). IR spectrum, $v, \mathrm{~cm}^{-1}: 3290,3341(\mathrm{NH}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $7.41 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 7.9 \mathrm{~Hz}\right)$, $7.52 \mathrm{t}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.2 \mathrm{~Hz}\right), 7.71 \mathrm{t}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.2 \mathrm{~Hz}\right)$, $7.99 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.1 \mathrm{~Hz}\right), 8.14 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 7.9 \mathrm{~Hz}\right)$,
$8.29 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.1 \mathrm{~Hz}\right), 9.21 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}\right), 9.55 \mathrm{~s}$ and $10.41 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{NH}_{2}\right), 11.72$ br. s $(1 \mathrm{H}, \mathrm{NH})$. Found, \%: C 66.01; H 3.84; N 10.95. $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{OS}$. Calculated, \%: C 66.12; H 3.96; N 11.02 .

3-[4'-(4"-Chlorophenyl)thiazol-2'-yl]-2H-chromen-2-one (XVII). a. A mixture of $5.2 \mathrm{~g}(10 \mathrm{mmol})$ of the substituted coumarin XIVa and $2.33 \mathrm{~g}(10 \mathrm{mmol})$ of p chlorophenacyl bromide XVI in 15 ml of DMF was stirred for 3 h and diluted with an equal volume of water. The resulting precipitate was filtered off, washed with ethanol and hexane. Yield $2.78 \mathrm{~g}(82 \%)$, $\mathrm{mp} 208-212^{\circ} \mathrm{C}(\mathrm{AcOH})$. IR spectrum, $\mathrm{v}, \mathrm{cm}^{-1}: 1718$ $(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, δ, ppm: $7.46 \mathrm{t}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J\right.$ $8.0 \mathrm{~Hz}), 7.55 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right), 7.72 \mathrm{t}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.0 \mathrm{~Hz}\right)$, $8.04 \mathrm{~d}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.0 \mathrm{~Hz}\right), 8.15 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 8.02 \mathrm{~Hz}\right)$, $8.38 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{\text {thiazole }}\right), 9.14 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}\right)$. Mass spectrum, $m / z\left(I_{\text {rel }}, \%\right): 339$ (100) $[M]^{+}, 275$ (8), 168 (81), 133 (42), 89 (24). Found, \%: C 63.52; H 2.85; N 4.01. $\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{ClNO}_{2} \mathrm{~S}$. Calculated, \%: C 63.63; H 2.97; N 4.12.
b. A mixture of $7.1 \mathrm{ml}(10 \mathrm{mmol})$ of salicylaldehyde $\mathbf{I a}$ and $2.7 \mathrm{~g}(10 \mathrm{mmol})$ of the substituted thiazole XVIII and $0.87 \mathrm{ml}(10 \mathrm{mmol})$ of morpholine III in 20 ml of ethanol was stirred at $20^{\circ} \mathrm{C}$ for 5 h and kept for 48 h . The resulting precipitate was filtered off, washed with ethanol and hexane. Yield $2.3 \mathrm{~g}(68 \%)$.

2-Imino-2H-chromene-2-carboselenoamide (XXII). A mixture of $7.1 \mathrm{ml}(10 \mathrm{mmol})$ of salicylaldehyde $\mathbf{I a}$, 1.47 g (10 mmol) of cyanoselenoacetamide $\mathbf{X X}$, and 1 drop of N -methylmorpholine in 15 ml of anhydrous ethanol was stirred for 1 h under argon. After 1 day the formed precipitate was filtered off, washed with ethanol and hexane. Yield $1.9 \mathrm{~g}(75 \%), \mathrm{mp} 125-127^{\circ} \mathrm{C}$ (EtOH). IR spectrum, $v, \mathrm{~cm}^{-1}: 3315-3411\left(\mathrm{NH}, \mathrm{NH}_{2}\right)$. ${ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 6.96-8.00 \mathrm{~m}\left(4 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$, $8.42 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}\right), 11.21$ br.s and 10.14 br.s $\left(1 \mathrm{H}, \mathrm{NH}_{2}\right)$, 12.37 br. s ($1 \mathrm{H}, \mathrm{NH}$). Found, \%: C 48.01 ; H 3.50 ; N 10.89. $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{OSe}$. Calculated, \%: C 47.82; H 3.31; N 11.15 .

3-(4-Phenyl-1,3-selenazol-2-yl)-2H-chromen-2-one (XXV). a. A mixture of $2.5 \mathrm{~g}(10 \mathrm{mmol})$ of compound XXII and $2.0 \mathrm{~g}(10 \mathrm{mmol})$ of phenacyl bromide XXIII in 15 ml of DMF was stirred for 3 h under argon, diluted with an equal volume of water, and kept for 48 h . The resulting precipitate was filtered off, washed with water, ethanol and hexane. Yield $2.53 \mathrm{~g}(72 \%)$, $\mathrm{mp} 211-213^{\circ} \mathrm{C}(\mathrm{BuOH})$. IR spectrum, $\mathrm{v}, \mathrm{cm}^{-1}: 1719$ $(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR spectrum, $\delta, \mathrm{ppm}: 7.29-7.58 \mathrm{~m}(5 \mathrm{H}$, $\left.\mathrm{H}_{\mathrm{Ar}}\right), 7.71 \mathrm{t}\left(1 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}, J 6.95 \mathrm{~Hz}\right), 8.04 \mathrm{~m}\left(3 \mathrm{H}, \mathrm{H}_{\mathrm{Ar}}\right)$,
$8.79 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{5} \mathrm{H}_{\text {selenazole }}\right), 9.09 \mathrm{~s}\left(1 \mathrm{H}, \mathrm{C}^{4} \mathrm{H}\right)$. Found, $\%$: C 61.22; H 3.03; N 3.81. $\mathrm{C}_{18} \mathrm{H}_{11} \mathrm{~N}_{2} \mathrm{OSe}$. Calculated, \%: C 61.38; H 3.15; N 3.98.
b. A mixture of $2.5 \mathrm{~g}(10 \mathrm{mmol})$ of the substituted selenazole XXVI, $1.07 \mathrm{ml}(10 \mathrm{mmol})$ of salicylaldehyde Ia in 15 ml of DMF was stirred for 3 h under argon and diluted with an equal volume of water. The resulting precipitate was filtered off, washed with water, ethanol, and hexane. Yield $2.64 \mathrm{~g}(75 \%)$.

REFERENCES

1. Bilov, I.E., Kovalenko, S.M., and Chernikh, V.P., Fiziol. Aktiv. Rechov., 1999, no. 2, p. 41.
2. O'Callaghan, C.N., Proc. Royal Irish Acad. (B), 1973, vol. 73, no. 17, p. 291.
3. O'Callaghan, C.N. and Conalty, M.L., Proc. Royal Irish Acad (B), 1979, vol. 79, no. 6, p. 87.
4. Bundy, G.L., Ayer, D.E., Banitt, L.S., Belonga, K.L., Mizsak, S.A., Palmer, J.R., Tustin, J.M., Chin, J.E., Hall, E.D., Linseman, K.L., Richards, I.M., Sherch, H.M., Sun, F.F., Yonkers, P.A., Larson, P.G., Lin, J.M., Padbury, G.E., Aaron, C.S., and Mayo, J.K., J. Med. Chem., 1995, vol. 38, no. 21, p. 4161.
5. Nasr, M.N. and Gineinah, M.M., Arch. Pharm. Pharm. Med. Chem., 2002, vol. 335, no. 6, p. 289.
6. Papalardo, M.S., Vittorio, F., Pasquinucci, L., and Bousquet, E., Farmaco, 1989, vol. 44, p. 483.
7. Ghahremanzadeh, R., Amanpour, T., and Bazgir, A., Tetrahedron Lett., 2010, vol. 51, no. 31, p. 4202.
8. Zonouzi, A., Biniaz, M., Mirzazadeh, R., Talebi, M., and Ng, S.W., Heterocycles, 2010, vol. 81, no. 5, p. 1271.
9. Zefirov, Yu.V. and Zorkii, P.M., Usp. Khim., 1989, vol. 58, no. 5, p. 713.
10. Shishkin, O.V., J. Mol. Struct., 1997, vol. 412, no. 3, p. 115.
11. Shishkin, O.V., Kovalevskii, A.Yu., and Dekaprilevich, M.O., Izv. Akad. Nauk, Ser. Khim., 1998, no. 3, p. 388.
12. Burgi, H.-B. and Dunitz, J.D., Structure Correlation, 1994, vol. 2, p. 741.
13. Sheldrick, G., Acta Cryst. (A), 2008, vol. 64, no. 1, p. 112.
14. Neese, F., Becker, U., Ganyushin, D., Hansen, A., Liakos, D.G., Kollmar, C., Kossmann, S., Petrenko, T., Reimann, C., Riplinger, C., Sivalingam, K., Valeev, E., Wezisla, B., and Wennmohs, F., ORCA 2.8.0, University of Bonn, Bonn, Germany, 2010.
15. Brunskill, J.S.A., De, A., Elagbar, Z., Jeffrey, H., and Ewing, D.F., Synth. Commun., 1978, vol. 8, no. 8, p. 533.
