
## SYNTHESIS OF 1-(1-AROYL-2-ARYLVINYL)-2-DICYANOMETHYLEN-1,2-DIHYDROPYRIDINES FROM 2-CHLOROPYRIDINIUM SALTS AND UNSATURATED NITRILES

## G. E. Khoroshilov

1-(1-Aroyl-2-arylvinyl)-2-dicyanomethylene-1,2-dihydropyridines are formed from 1-(aroylmethyl)-2chloropyridinium bromides and arylmethylenemalonitriles in ethanol at room temperature in the presence of a twofold excess of triethylamine. The products are converted into 2-amino-3-aroyl-1cyanoindolizines on boiling in acetic acid.

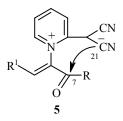
**Keywords:** 1-(aroylmethyl)-2-chloropyridinium bromides, reactions with arylmethyleneindolonitriles, 1-(1-aroyl-2-arylvinyl)-2-dicyanomethylene-1,2-dihydropyridines.

In a continuation of investigations, which are aimed at simple methods for the synthesis of 2-dicyanomethylenepyridines [1, 2], it was found that 1-(aroylmethyl)-2-chloropyridinium bromides **1a-d** reacted with arylmethylenemalononitriles **2a-h** in the presence of a twofold excess of a tertiary base to give 1-(1-aroyl-2-arylvinyl)-2-dicyanomethylene-1,2-dihydropyridines **3a-j** [3] (Table 1). The reactions occur under mild conditions, probably via intermediate **4**. The structures of compounds **3a-j** have been confirmed by IR and <sup>1</sup>H NMR spectroscopy (Table 2).



Taras Shevchenko Lugansk State University, Lugansk 348011, Ukraine; e-mail: kgb@lgpi.lugansk.ua. Translated form Khimiya Geterotsiklicheskikh Soedinenii, No. 9, 1245-1249, September 2001. Original article submitted October 11, 1999.

| Com-<br>pound | Empirical<br>formula                                |                       | Found, %<br>Calculated, % | mp, °C<br>(recrystallisation | Yield,         |    |
|---------------|-----------------------------------------------------|-----------------------|---------------------------|------------------------------|----------------|----|
|               | Iomuna                                              | С                     | Н                         | Ν                            | solvent)       | 70 |
| 3a            | $C_{24}H_{17}N_3O_2$                                | <u>76.01</u><br>75.97 | $\frac{4.48}{4.52}$       | $\frac{11.11}{11.08}$        | 146-148 (EtOH) | 88 |
| 3b            | $C_{23}H_{14}FN_3O$                                 | <u>75.22</u><br>75.19 | $\frac{3.87}{3.84}$       | <u>11.41</u><br>11.44        | 184-186 (EtOH) | 87 |
| 3c            | $C_{23}H_{14}FN_3O$                                 | $\frac{75.23}{75.19}$ | $\frac{3.82}{3.84}$       | $\frac{11.46}{11.44}$        | 126-128 (EtOH) | 89 |
| 3d            | $C_{25}H_{19}N_3O_3$                                | $\frac{73.31}{73.34}$ | $\frac{4.71}{4.68}$       | $\frac{10.29}{10.26}$        | 222-224 (EtOH) | 73 |
| 3e            | $C_{27}H_{23}N_3O_3$                                | $\frac{74.09}{74.12}$ | $\frac{5.31}{5.30}$       | $\frac{9.64}{9.60}$          | 150-152 (BuOH) | 74 |
| 3f            | C <sub>23</sub> H <sub>14</sub> ClN <sub>3</sub> O  | <u>71.93</u><br>71.97 | $\frac{3.63}{3.68}$       | <u>10.99</u><br>10.95        | 189-191 (EtOH) | 59 |
| 3g            | C <sub>23</sub> H <sub>13</sub> BrFN <sub>3</sub> O | $\frac{61.94}{61.90}$ | <u>2.98</u><br>2.94       | <u>9.39</u><br>9.42          | 208-209 (BuOH) | 64 |
| 3h            | $C_{21}H_{12}BrN_3O_2$                              | $\frac{60.35}{60.31}$ | $\frac{2.93}{2.89}$       | $\frac{10.08}{10.05}$        | 240-242        | 83 |
| 3i            | $C_{21}H_{12}ClN_3O_2$                              | <u>67.52</u><br>67.48 | $\frac{3.21}{3.24}$       | <u>11.27</u><br>11.24        | 261-262 (dec.) | 77 |
| 3ј            | $C_{21}H_{13}N_3OS$                                 | $\frac{71.01}{70.97}$ | $\frac{3.72}{3.69}$       | $\frac{11.79}{11.82}$        | 138-140 (EtOH) | 82 |


TABLE 1. Characteristics of Compounds 3a-j

In addition the molecular structure of 1-[1-benzoyl-2-(2-furyl)vinyl]-2-dicyanomethylene-1,2-dihydropyridine was investigated by X-ray crystallography [4].

| Com-<br>pound | IR spectrum, v, $cm^{-1}$ |      |      |                                                                                                                                                                                                                                                                                              |
|---------------|---------------------------|------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|               | C=N                       | C=O  | C=C  | <sup>1</sup> H NMR spectrum, δ, ppm                                                                                                                                                                                                                                                          |
| 3a            | 2157, 2180                | 1633 | 1620 | 3.80 (3H, s, OCH <sub>3</sub> ); 6.94 (1H, s, 4-H);<br>7.02-8.18 (13H, m, 3-, 5-, 6-H, C <sub>6</sub> H <sub>4</sub> , C <sub>6</sub> H <sub>5</sub> ,CH)                                                                                                                                    |
| 3b            | 2155, 2186                | 1653 | 1624 | 6.85-8.07 (13H, m, Py, C <sub>6</sub> H <sub>5</sub> , C <sub>6</sub> H <sub>4</sub> );<br>8.20 (1H, s, CH)                                                                                                                                                                                  |
| 3c            | 2154, 2184                | 1649 | 1621 | 6.96 (1H, t, 4-H); 7.13-8.10 (13H, m, 3-, 5-, 6-H, C <sub>6</sub> H <sub>4</sub> , C <sub>6</sub> H <sub>5</sub> ); 17 (1H, s, CH)                                                                                                                                                           |
| 3d            | 2162, 2186                | 1652 | 1623 | 3.58 (3H, s, OCH <sub>3</sub> ); 3.81 (3H, s, OCH <sub>3</sub> );<br>6.71-8.05 (12H, m, Py, C <sub>6</sub> H <sub>5</sub> , C <sub>6</sub> H <sub>3</sub> );<br>7.79 (1H, s, CH)                                                                                                             |
| 3e            | 2160, 2168<br>2185, 2195  | 1650 | 1622 | 1.26 (6H, t, (CH <sub>3</sub> ) <sub>2</sub> ); 4.08 (4H, dd, (OCH <sub>2</sub> ) <sub>2</sub> );<br>6.64 (2H, d, C <sub>6</sub> H <sub>2</sub> ); 6.98 (1H, t, 4-H);<br>7.33-7.98 (9H, m, 3-, 5-, 6-H, C <sub>6</sub> H <sub>1</sub> , C <sub>6</sub> H <sub>5</sub> );<br>8.25 (1H, s, CH) |
| 3f            | 2152, 2180                | 1656 | 1620 | 6.90 (1H, t, 4-H); 6.93-8.12 (13H, m, 3-, 5-, 6-H, C <sub>6</sub> H <sub>4</sub> , C <sub>6</sub> H <sub>5</sub> , CH)                                                                                                                                                                       |
| 3g            | 2154, 2182                | 1654 | 1622 | 6.98 (1H, t, 4-H); 7.31-7.98 (12H, m, 3-, 5-, 6-H, C <sub>6</sub> H <sub>4</sub> , C <sub>6</sub> H <sub>4</sub> , CH)                                                                                                                                                                       |
| 3h            | 2158, 2187                | 1651 | 1624 | 6.74 (1H, dd, C <sub>4</sub> H <sub>3</sub> O); 6.92 (1H, t, 4-H);<br>7.17 (1H, d, C <sub>4</sub> H <sub>3</sub> O); 7.35 (1H, d, C <sub>4</sub> H <sub>3</sub> O);<br>7.73-7.92 (8H, m, 3-, 5-, 6-H, C <sub>6</sub> H <sub>4</sub> , CH)                                                    |
| 3i            | 2152, 2179                | 1648 | 1620 | 6.72 (1H, dd, C <sub>4</sub> H <sub>3</sub> O); 6.94 (1H, t, 4-H);<br>7.15 (1H, d, C <sub>4</sub> H <sub>3</sub> O); 7.35 (1H, d, C <sub>4</sub> H <sub>3</sub> O);<br>7.75-8.01 (7H, m, 3-, 5-, 6-H, C <sub>6</sub> H <sub>4</sub> );<br>8.23 (1H, s, CH)                                   |
| 3j            | 2162, 2192                | 1656 | 1624 | 6.72-7.00 (4H, m, 4-H, C <sub>4</sub> H <sub>3</sub> S); 7.20-8.10 (8H, m<br>5-, 6-, C <sub>6</sub> H <sub>5</sub> , CH); 8.20 (1H, d, 3-H)                                                                                                                                                  |

TABLE 2. IR and <sup>1</sup>H NMR Spectroscopic Data for Compounds **3a-j** 

The considerable decrease in the vibration frequencies of the cyano groups to 2152-2195 cm<sup>-1</sup> in the IR spectra and the increase intensities in comparison with 2(1H)-dicyanomethylenepyrimidines (quinolines) [1, 5] indicate that the bipolar resonance form **5** contributes to the structure of compounds **3**.



The decrease in the frequencies of the keto groups to 1633-1656 cm<sup>-1</sup> [6] indicates a large amount of conjugation in the  $\alpha$ , $\beta$ -unsaturated ketone unit. In the <sup>1</sup>H NMR spectra the olefinic proton is shifted to low field at 7.67-8.03 ppm which also confirmed conjugation of the double bond and the keto group. On the whole the <sup>1</sup>H NMR spectra are not in contradictory with suggested structure **3**, however the basic part of signals were overlapped by the resonances of the aromatic protons at 6.71-8.21 ppm.

It was predicted with high probability on the basis of the X-ray crystallographic results (an enforced short nonbonding intramolecular contact  $C(7)\cdots C(21)$  [2.797(4) Å] [4]) and spectroscopic studies (redistribution of the electron density in molecules 3) that compounds 3 would undergo further cyclisation to the indolizines 6. In fact when compounds 3c,g,i were boiled for a short time in acetic acid they gave 2-amino-3-aroyl-1-cyanoindolizines 6a-c (route A) (in small yields because of insufficient solubility). The <sup>1</sup>H NMR spectra and characteristics of these compounds are given in Table 3.

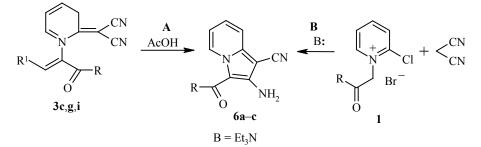



TABLE 3. Characteristics and <sup>1</sup>H NMR Spectra of Compounds 6a-c

| Com-<br>pound | Empirical<br>formula                               | Found, %<br>Calculated, % |                     | mp, °C<br>(ethanol)   | <sup>1</sup> H NMR spectrum,<br>δ, ppm | Yield, %<br>A/B                                                                                                                                             |       |
|---------------|----------------------------------------------------|---------------------------|---------------------|-----------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6a            | C <sub>16</sub> H <sub>11</sub> N <sub>3</sub> O   | <u>73.58</u><br>73.55     | <u>4.22</u><br>4.24 | <u>16.04</u><br>16.08 | 161-163                                | 5.66 (2H, br. s, NH <sub>2</sub> );<br>6.98 (1H, m, 7-H);<br>7.50 (2H, dd, 5-, 6-H);<br>7.58 (5H, s, C <sub>6</sub> H <sub>5</sub> );<br>9.16 (1H, d, 8-H)  | 32/90 |
| 6b            | C <sub>16</sub> H <sub>10</sub> BrN <sub>3</sub> O | <u>56.52</u><br>56.49     | <u>2.99</u><br>2.96 | <u>12.33</u><br>12.35 | 192-194                                | 5.92 (2H, br. s, NH <sub>2</sub> );<br>7.00 (1H, m, 7-H);<br>7.55 (2H, dd, 5-, 6-H);<br>7.68 (4H, dd, C <sub>6</sub> H <sub>4</sub> );<br>9.17 (1H, d, 8-H) | 43/94 |
| 6c            | C <sub>16</sub> H <sub>10</sub> ClN <sub>3</sub> O | <u>65.01</u><br>64.98     | $\frac{3.44}{3.41}$ | $\frac{14.17}{14.21}$ | 199-201                                | 5.88 (2H, br. s, NH <sub>2</sub> );<br>6.97 (1H, dt, 7-H);<br>7.48 (2H, dd, 5-, 6-H);<br>7.60 (4H, s, C <sub>6</sub> H <sub>4</sub> );<br>9.14 (1H, d, 8-H) | 41/96 |

The indolizines 6a-c were also obtained by direct synthesis from the pyridinium salts 1a-c and malonodinitrile (route B) [7].

## EXPERIMENTAL

IR spectra of nujol mulls were recorded with an IKS-29. <sup>1</sup>H NMR spectra were recorded with a Bruker WP-100 SY (100.13 MHz, internal standard TMS). Commercial DMSO-d<sub>6</sub> was used as solvent without further purification. Purity of the products was monitored by TLC (Silufol UV-254, 3:5 acetone–hexane).

1-(1-Aroyl-2-arylvinyl)-2-dicyanomethylene-1,2-dihydropyridines (3a-j). Triethylamine (0.7 ml, 5.0 mmol) was added with stirring to a suspension of a salt 1 (2.5 mmol) and an unsaturated nitrile 2 (2.5 mmol) in ethanol (15-20 ml). The mixture was stirred for 3 h at 20°C. The precipitate was filtered off and washed with ethanol and hexane. Where necessary it was recrystallized from a suitable solvent. Characteristics of the products are cited in Tables 1 and 2.

**2-Amino-3-aroyl-1-cyanoindolizines (6a-c). A.** A solution of a 1,2-dihydropyridine **3** (1.0 mmol) in acetic acid (5 ml) was boiled for 5 min and kept for 1 day at 20°C. The precipitate was filtered off and washed with ethanol and hexane.

**B.** Triethylamine (1.4 ml, 10.0 mmol) was added to a suspension of a salt 1 (5.0 mmol) and malononitrile (0.4 g, 6.0 mmol) in ethanol (15 ml). The mixture was stirred at 20°C for 1 h, then kept for 1 day in a refrigerator. The precipitate was filtered off, washed with ethanol and hexane, and recrystallized from ethanol. Characteristics of the compounds obtained are cited in Table 3.

## REFERENCES

- 1. Yu. A. Sharanin, G. E. Khoroshilov, A. M. Shestopalov, V. N. Nesterov, V. E. Shklover, V. P. Litvinov, Yu. T. Struchkov, and O. M. Nefedov, *Zh. Org. Khim.*, **27**, 299 (1991).
- 2. I. A. Aitov, V. N. Nesterov, Yu. A. Sharanin, and Yu. T. Struchkov, *Izv. Akad. Nauk, Ser. Khim.*, 434 (1996).
- 3. I. A. Aitov and G. E. Khoroshilov, *Abstracts. Ukr. Conf. "Chemistry of Nitrogen Heterocycles"* [in Ukrainian], Kharkov (1997), 46.
- 4. V. N. Nesterov, Izv. Akad. Nauk, Ser. Khim., 181 (1998).
- 5. A. I. Mikhalev, M. E. Konshin, and M. I. Vakhrin, *Khim. Geterotsikl. Soedin.*, 519 (1996).
- 6. *Organikum* [Russian translation], Mir, Moscow (1992), **1**, 487.
- 7. H. Pauls and F. Kröhnke, *Chem. Ber.*, **110**, 1294 (1977).