Synthesis of 2-Thioxo-4,6-diphenyl-1,2-dihydronicotinonitrile via Condensation of Benzaldehyde with Cyanothioacetamide and *p*-(1-Styryl)morpholine

I. V. Dyachenko and V. D. Dyachenko

Shevchenko Lugansk University, ul. Oboronnaya 2, Lugansk, 91011 Ukraine e-mail: dyachvd@mail.ru

Received March 5, 2015

Abstract—2-Thioxo-4,6-diphenyl-1,2-dihydronicotinonitrile has been prepared via condensation of benzaldehyde with cyanothioacetamide and *N*-(1-styryl)morpholine; alkylation of the product with alkyl halides has afforded substituted 2-alkylsulfanyl-4,6-diphenylnicotinonitriles and 3-amino-2-acyl-4,6-diphenylthieno[2,3-*b*]pyridines.

Keywords: benzaldehyde, cyanothioacetamide, *N*-(1-styryl)morpholine, 2-thioxodihydronicotinonitrile, 2-alkylsulfanylnicotinonitrile, thieno[2,3-*b*]pyridine **DOI:** 10.1134/S1070363215060146

Derivatives of aryl(hetaryl)-substituted 2-oxo(thioxo)-1,2-dihydronicotinonitrile are biologically active compounds exhibiting antimicrobial [1, 2], antitumor [3], and herbicide [4] activity. They can be prepared via interaction of δ -ketodinitriles with elemental sulfur [5, 6] or hydrogen sulfide [7], chalcones reaction with cyanothioacetamide [7, 8], and by condensation of aryl-(hetaryl)methylidenecyanothioacetamides with acetophenones [9–11] or their enamines [11].

Extending the studies on the chemistry of 4,6-diaryl-2-thioxo-1,2-dihydronicotinic acid derivatives [12-14], we developed a new procedure for the preparation of such organic compounds based on the condensation of benzaldehyde (I) with cyanothioacetamide (II) and N-(1-styryl)morpholine (III) in anhydrous ethanol at 20°C; the reaction product was 2-thioxo-4,6-diphenyl-1,2dihydronicotinonitrile (IV). The reaction likely involved the formation of Knoevenagel alkene (A) that alkylated the enamine III via the Stork reaction [15] to yield the adduct **B**. The latter underwent the intramolecular transamination [16] followed by dehydration (probably, aided by air oxygen) to form compound IV, earlier prepared via the reaction of δ ketodinitrile with elemental sulfur [5] (Scheme 1).

The alkylation of compound **IV** with alkyl halides **Va–Vm** in DMF solution in the alkali medium occurred regioselectively at the sulfur atom to yield the thioesters **VIa–VIm** capable of the intramolecular cyclization at their treatment with KOH solution in aqueous DMF affording the 2-alkoxycarbonyl-3amino-4,6-diphenylthieno[2,3-*b*]pyridines **VIIa–VIIc**, potential intermediate products for the synthesis of antitumor [17, 18] and antiviral [19] drugs.

Structure of the prepared compounds **VIa–VIm** and **VIIa–VIIc** was confirmed by their physicochemical and spectral properties (Tables 1 and 2).

In particular, IR spectra of compounds VI contained characteristic absorption bands of the conjugated nitrile group stretching vibrations at 2214–2226 cm⁻¹. Those signals were absent in the spectra of the thienopyridines VII; instead, the bands assigned to stretching and bending vibrations of the amino group were observed at 3198–3350 and 1638–1645 cm⁻¹, respectively.

¹H NMR spectra of the thioesters **VI** were remarkable for the presence of a singlet signal of the H⁵ proton of pyrimidine ring at 7.38–7.85 ppm and that of the SCH₂ group at 4.11–5.11 ppm; those signals disappeared after the substrates transformation into the thienopyridines **VII**. ¹H NMR spectra of compounds **VII** contained the broadened singlet signal of the amino group protons at 5.80–6.51 ppm.

Mass spectra of compounds VIb, VIi–VIm contained weak signals of the [M + 2] ion peaks, pointing at the presence of a single S atom in the

V–VII, Hlg=Br, R=Me₂CHCH₂CO (**a**); Cl, Me₂CHOCO (**b**); Br, Me(CH₂)₃CO (**c**); Br, 4-cyclohexylbenzoyl (**d**); Br, HC=C (**e**); Br, PhCO (**f**); Cl, MeOCO (**g**); Cl, quinolin-8-ylcarbamoyl (**h**); Cl, PhCH₂OCO (**i**); Cl, PhNHCO (**j**); Cl, 4-AcC₆H₄NHCO (**k**); Cl, Me(CH₂)₇OCO (**l**); Cl, Me(CH₂)₈OCO (**m**).

Comp. no.	Yield, %		Found, %			Eamoula	Calculated, %		
		mp, °C	С	Н	N	Formula	С	Н	Ν
VIa	82	105–106 (PrOH)	74.42	5.66	7.11	$C_{24}H_{22}N_2OS$	74.58	5.74	7.25
VIb	70	165–166 (AcOH)	71.01	5.04	7.12	$C_{23}H_{20}N_2O_2S$	71.11	5.19	7.21
VIc	74	110-112 (AcOH)	74.49	5.68	7.09	$C_{24}H_{22}N_2OS$	74.58	5.74	7.25
VId	85	176–178 (AcOH)	78.50	5.61	5.68	$C_{32}H_{28}N_2OS$	78.66	5.78	5.73
VIe	70	132–134 (EtOH)	77.14	4.25	8.41	$C_{21}H_{14}N_2S$	77.27	4.32	8.58
VIf	81	182–184 (AcOH)	76.70	4.39	6.71	$C_{26}H_{18}N_2OS$	76.82	4.46	6.89
VIg	76	191-193 (MeOH)	69.83	4.32	7.60	$C_{21}H_{16}N_2O_2S$	69.98	4.48	7.77
VIh	77	211–213 (BuOH)	73.62	4.15	11.73	$C_{29}H_{20}N_4OS$	73.71	4.27	11.86
VIi	74	140-141 (EtOH)	74.08	4.50	6.32	C ₂₇ H ₂₀ N ₂ O ₂ S 74.29		4.62	6.42
VIj	82	218-220 (BuOH)	73.95	4.41	4.41 9.80 C ₂₆ H ₁₉ N ₂		74.09	4.54	9.97
VIk	76	225–227 ^a (BuOH)	72.44	4.64	8.95	$C_{28}H_{21}N_3O_2S$	72.55	4.57	9.07
VII	75	98–99 (MeOH)	73.18	6.44	5.97	$C_{28}H_{30}N_2O_2S$	73.33	6.59	6.11
VIm	69	96–97 (MeOH)	73.54	6.70	5.86	$C_{29}H_{32}N_2O_2S$	73.69	6.82	5.93
VIIa	79) 100–102 (BuOH) 74.49 5.64 7.17 C ₂₄		$C_{24}H_{22}N_2OS$	74.58	5.74	7.25		
VIIb	68	115–116 (<i>i</i> -PrOH)	70.96	5.10	7.12	C ₂₃ H ₂₀ N ₂ O ₂ S 71.11 5.19		5.19	7.21
VIIc	70	80-82 (MeOH)	H) 74.40 5.64 7.15 $C_{24}H_{22}N_2OS$		74.58	5.74	7.25		

Table 1. Yields, melting points, and elemental analysis data for 2-alkylsulfanyl-4,6-diphenylnicotinonitriles (**VIa–VIm**) and 3-amino-2-acyl-4,6-diphenylthieno[2,3-*b*]pyridines (**VIIa–VIIc**)

^a Sublimates at 160°C.

Comp	ν , cm ⁻¹		δ, ppm (<i>J</i> , Hz)				
no.	C≡N or NH ₂	C=O, δ(NH ₂)	H ⁵ , SCH ₂ , or NH ₂	other signals			
VIa	2218	1688	7.46, 4.18	1.91 d (6H, 2Me, J 5.1), 2.03–2.15 m (1H, <u>CH</u> Me ₂), 2.54 d (2H, CH ₂ CO, J 6.0), 7.52–7.61 m (4H, Ph), 7.65–7.73 m (4H, Ph), 8.05 d (2H, Ph, J 7.9)			
VIb	2215	1719	7.85, 4.17	1.18 d (6H, 2Me, <i>J</i> 4.8), 4.94 q (1H, <u>CH</u> Me ₂ , <i>J</i> 4.8), 7.38–7.72 m (8H, H _{arom}), 8.11– 8.26 m (2H, Ph)			
VIc	2219	1713	7.38, 4.19	0.85 t (3H, Me, <i>J</i> 7.5), 1.18–1.26 m (2H, CH ₂), 1.43–1.59 m (2H, CH ₂), 2.65 t (2H, CH ₂ CO, <i>J</i> 7.5), 7.44–7.58 m (6H, H _{arom}), 7.82–7.87 m (2H, Ph), 8.04 d (2H, Ph, <i>J</i> 7.5)			
VId	2220	1715	7.79, 4.92	1.21–1.62 m (5H, cyclohexane), 1.73–1.99 m (5H, cyclohexane), 2.68 t (1H, cyclohexane, <i>J</i> 5.4), 7.21 t (2H, Ph, <i>J</i> 6.9), 7.39 t (3H, Ph, <i>J</i> 6.9), 7.55 t (3H, Ph, <i>J</i> 7.1), 7.73 d (2H, Ph, <i>J</i> 7.1), 7.90 d (2H, C ₆ H ₄ , <i>J</i> 7.6), 8.05 d (2H, C ₆ H ₄ , <i>J</i> 7.6)			
VIe	2212	2244 (C≡C)	7.83, 4.21	2.90 s (1H, ≡CH), 7.48–7.63 m (6H, 2Ph), 7.71 d (2H, Ph, <i>J</i> 6.9), 8.29 d (2H, Ph, <i>J</i> 7.1)			
VIf	2223	1700	7.69, 4.93	7.12 t (2H, Ph, <i>J</i> 7.7), 7.33 t (1H, Ph, <i>J</i> 6.4), 7.43–7.58 m (4H, Ph), 7.60–7.78 m (4H, Ph), 7.83 d (2H, Ph, <i>J</i> 8.0), 8.09 d (2H, Ph, <i>J</i> 8.0)			
VIg	2218	1720	7.80, 4.18	3.78 s (3H, Me), 7.38–7.61 m (6H, 2Ph), 7.68 d (2H, Ph, <i>J</i> 7.1), 8.14 d (2H, Ph, <i>J</i> 6.9)			
VIh	2221	1666	7.82, 4.44	7.16–7.65 m (10H, H _{arom}), 8.16–8.39 m (4H, H _{arom}), 8.51–8.72 m (2H, H _{arom}), 10.70 br.s (1H, NH)			
VIi	2225	1714	7.76, 5.11	4.24 s (2H, OCH ₂), 7.26 br.s (5H, Ph), 7.31–7.64 m (8H, Ph), 8.13 d (2H, Ph, J7.1)			
VIj	2220	1670	7.72, 4.24	7.00 t (1H, Ph, <i>J</i> 7.1), 7.09–7.33 m (5H, Ph), 7.48 br.s (5H, Ph), 7.64 d (2H, Ph, <i>J</i> 6.9), 8.19 d (2H, Ph, <i>J</i> 6.9), 10.23 br.s (1H, NH)			
VIk	2222	1663	7.75 ^ª , 4.29	2.54 s (3H, Me), 7.26–7.51 m (3H, H _{arom}), 7.57–7.90 ^a m (8H, H _{arom}), 7.96 t (2H, H _{arom} , J 7.1), 8.13 d (2H, H _{arom} , J 6.9), 10.60 br.s (1H, NH)			
VII	2226	1718	7.74, 4.11	0.82 t (3H, Me, <i>J</i> 6.7), 0.92–1.31 br.s (10H, 5CH ₂), 1.39–1.64 m (2H, CH ₂), 4.01 t (2H, OCH ₂ , <i>J</i> 6.8), 7.31–7.66 m (8H, H _{arom}), 8.02–8.19 m (2H, Ph)			
VIm	2225	1715	7.73, 4.13	0.85 t (3H, Me, <i>J</i> 5.6), 1.01–1.39 br.s (12H, 6CH ₂), 1.43–1.70 m (2H, CH ₂), 4.06 t (2H, OCH ₂ , <i>J</i> 6.2), 7.41–7.67 m (8H, H _{arom}), 8.02–8.20 m (2H, H _{arom})			
VIIa	3198, 3270, 3331	1690, 1638	7.78, 6.45	0.94 d (6H, 2Me, J 5.2), 2.11–2.22 m (1H, <u>CH</u> Me ₂), 2.54 d (2H, CH ₂ CO, J 5.1), 7.41–7.46 m (2H, Ph), 7.49–7.66 m (6H, H _{arom}), 8.22 d (2H, Ph, J 8.2)			
VIIb	3205, 3272, 3345	1699, 1645	7.80, 5.80	1.30 d (6H, 2Me, <i>J</i> 5.1), 5.06–5.19 m (1H, <u>CH</u> Me ₂), 7.48–7.53 m (3H, Ph), 7.62 br.s (5H, Ph), 8.23 d (2H, Ph, <i>J</i> 7.1)			
VIIc	3200, 3291, 3350	1710, 1644	7.76, 6.51	0.88 t (3H, Me, J 5.6), 1.22–1.38 m (2H, CH ₂), 1.59–1.63 m (2H, CH ₂), 2.64 t (2H, OCH ₂ , J 5.5), 7.48 d (3H, Ph, J 7.5), 7.58 br.s (5H, Ph), 8.21 d (2H, Ph, J 7.6)			

Table 2. IR and ¹H NMR spectral data for 2-alkylsulfanyl-4,6-diphenylnicotinonitriles (**VIa–VIm**) and 3-amino-2-acyl-4,6-diphenylthieno[2,3-*b*]pyridines (**VIIa–VIIc**)

^a Overlapping signals.

structures. The values of the molecular ion peaks coincided with the "nitrogen rule" [20].

To summarize, we have elaborated a new method of preparation of 2-thioxo-4,6-diphenyl-1,2-dihydronicotinonitriles based on the three-component condensation of benzaldehyde, cyanothioacetamide, and *N*-(1styryl)morpholine.

EXPERIMENTAL

IR spectra of the KBr pellets were recorded using an UR-20 instrument. ¹H and ¹³C NMR spectra of the solutions in DMSO- d_6 were registered using a Bruker 500 spectrometer (at 500.13 and 125.75 MHz, respectively) with TMS as the internal reference. Elemental analysis was performed using an EuroVector EA-3000 microanalyzer. Chromato-mass spectrometry analysis was performed using a Hewlett-Packard 5890/5972 GC-MS spectrometer (chemical ionization, HP5-MS column, solutions in CF₃COOH) for compounds VIa, VIc-VIh and VIIa-VIIc or a KRATOS 890A spectrometer (EI, 70 eV, direct injection of the substance in the ion source) for compounds VIb, VIi-VIm. Melting points were determined using a Koeffler heating block. The reactions course was monitored by TLC on the Silufol-254 plates (acetone-hexane 3 : 5, developing with iodine vapor or UV irradiation).

2-Thioxo-4,6-diphenyl-1,2-dihydronicotinonitrile (IV). A droplet of morpholine was added to a mixture of 1.0 mL (10 mmol) of benzaldehyde and 1.0 g (10 mmol) of cyanothioacetamide, and the mixture was stirred during 30 min. Enamine III [1.9 g (10 mmol) at 20°C] was then added, and the mixture was further stirred during 1 h. Then, after maintaining for 24 h the mixture was diluted with 10 wt % aqueous hydrochloric acid and further kept at room temperature for 2 h. The formed precipitate was filtered off and washed with water, ethanol, and hexane. Yield 2.3 g (79%), yellow crystals, mp 227–229°C (AcOH) (mp 228–230°C [5]).

2-Alkylsulfanyl-4,6-diphenylnicotinonitriles (VIa–VIm) (general procedure). 5.6 mL of 10 wt % aqueous KOH (10 mmol of the alkali) and 10 mmol of the corresponding alkyl halide **Va–Vm** were added to a stirred solution of 2.9 g (10 mmol) of compound **IV** in 15 mL of DMF, and the mixture was stirred during 30 min. After keeping for 24 h the mixture was diluted with equal volume of water; the formed precipitate was filtered off and washed with water, ethanol, and hexane.

2-(2-Oxoisohexylsulfanyl)-4,6-diphenylnicotinonitrile (VIa). Mass spectrum, m/z (I_{rel} , %): 387 (100) $[M + 1]^+$. *M* 386.519. Fluorescent under UV irradiation.

Isopropyl-2-(4,6-diphenyl-3-cyanopyridin-2-yl-sulfanyl) acetate (VIb). Mass spectrum, m/z (I_{rel} , %): 390 (3) $[M + 2]^+$, 389 (11) $[M + 1]^+$, 388 (33) $[M]^+$, 387 (39) $[M - 1]^+$, 345 (10), 329 (14), 301 (100) $[M - Me_3CHOCO]^+$, 255 (14), 227 (15), 140 (11), 77 (22) $[Ph]^+$, 44 (12) $[C=S]^+$, 43 (59) $[Me_2CH]^+$. *M* 388.491.

2-(2-Oxohexylsulfanyl)-4,6-diphenylnicotinonitrile (VIc). Mass spectrum, m/z (I_{rel} , %): 387 (100) $[M + 1]^+$. *M* 386.519. Fluorescent under UV irradiation.

4,6-Diphenyl-2-[2-oxo-2-(4-cyclohexylphenyl)ethylsulfanyl]nicotinonitrile (VId). Mass spectrum, m/z (I_{rel} , %): 489 (100) $[M + 1]^+$. M 488.656.

2-PropargyIsulfanyI-4,6-diphenyInicotinonitrile (VIe). Mass spectrum, m/z (I_{rel} , %): 327 (100) $[M + 1]^+$. M 326.423.

2-Benzoylmethylsulfanyl-4,6-diphenylnicotinonitrile (VIf). Mass spectrum, m/z (I_{rel} , %): 407 (100) $[M + 1]^+$. M 406.509.

Methyl-2-(4,6-diphenyl-3-cyanopyridin-2-yl) acetate (VIg). Mass spectrum, m/z (I_{rel} , %): 361 (100) $[M + 1]^+$. M 360.438.

N-(Quinolin-8-yl)-2-(4,6-diphenyl-3-cyanopyridin-2-ylsulfanyl) acetamide (VIh). Mass spectrum, m/z(I_{rel} , %): 472 (100) $[M + 1]^+$. *M* 471.585.

Benzyl-2-(4,6-diphenyl-3-cyanopyridin-2-ylsulfanyl) acetate (VIi). Mass spectrum, m/z (I_{rel} , %): 438 (3) $[M + 2]^+$, 437 (9) $[M + 1]^+$, 436 (30) $[M]^+$, 435 (39) $[M - 1]^+$, 345 (5) $[M - PhCH_2]^+$, 301 (48), 288 (18), 255 (11), 227 (15), 91 (100) $[PhCH_2]^+$, 77 (21) $[Ph]^+$, 65 (12) 51 (5). M 436.536.

N-Phenyl-2-(4,6-diphenyl-3-cyanopyridin-2-ylsulfanyl) acetamide (VIj). Mass spectrum, m/z (I_{rel} , %): 423 (4) $[M + 2]^+$, 422 (13) $[M + 1]^+$, 421 (45) $[M]^+$, 420 (5) $[M - 1]^+$, 329 (100) $[M - PhNH]^+$, 301 (56) $[M - PhNHCO]^+$, 255 (11), 211 (12), 93 (16) $[PhNH_2]^+$, 77 (15) $[Ph]^+$, 65 (7) 51 (5). M 421.524.

N-(4-Acetylphenyl)-2-(4,6-diphenyl-3-cyanopyridin-2-ylsulfanyl) acetamide (VIk). Mass spectrum, m/z(I_{rel} , %): 465 (2) $[M + 2]^+$, 464 (4) $[M + 1]^+$, 463 (12) $[M]^+$, 462 (6) $[M - 1]^+$, 329 (35) $[M - AcC_6H_4NH]^+$, 301 (100) $[M - PhNH]^+$, 227 (13), 120 (14), 91 (7) $[PhN]^+$, 77 (16) $[Ph]^+$, 43 (15) $[Ac]^+$. *M* 436.562. Octyl-2-(4,6-diphenyl-3-cyanopyridin-2-ylsulfanyl) acetate (VII). Mass spectrum, m/z (I_{rel} , %): 460 (4) $[M + 2]^+$, 459 (19) $[M + 1]^+$, 458 (57) $[M]^+$, 457 (90) $[M - 1]^+$, 301 (100) $[M - Me(CH_2)_7OCO]^+$, 288 (11), 255 (15), 227 (13), 140 (6), 77 (16) $[Ph]^+$, 69 (9), 55 (18), 43 (47), 41 (39). M 458.627.

Nonyl-2-(4,6-diphenyl-3-cyanopyridin-2-ylsulfanyl) acetate (VIm). Mass spectrum, m/z (I_{rel} , %): 474 (4) $[M + 2]^+$, 473 (16) $[M + 1]^+$, 472 (48) $[M]^+$, 471 (44) $[M - 1]^+$, 301 (100) $[M - Me(CH_2)_8OCO]^+$, 288 (9), 255 (12), 227 (11), 77 (8) $[Ph]^+$, 55 (17), 43 (39). M472.655.

3-Amino-2-acyl-4,6-diphenylthieno[2,3-b]pyridines (VIIa–VIIc) (general procedure). A mixture of 10 mmol of the corresponding 2-alkylsulfanylnicotinonitrile (VIa–VIc), 5.6 mL of 10 wt % aqueous KOH solution (10 mmol of the alkali), and 20 mL of DMF was stirred during 2 h and then diluted with equal volume of water. The formed precipitate was filtered off and washed with water, ethanol, and hexane.

3-Amino-2-(1-oxoisoamyl)-4,6-diphenylthieno-[**2,3-***b*]**pyridine (VIIa).** Mass spectrum, m/z (I_{rel} , %): 387 (100) $[M + 1]^+$. *M* 386.519.

Isopropyl-2-(3-amino-4,6-diphenylthieno[2,3-*b***]-pyridin-2-yl) acetate (VIIb).** Mass spectrum, m/z (I_{rel} , %): 389 (100) [M + 1]⁺. ¹³C NMR spectrum, δ_C , ppm: 22.28, 68.24, 95.98, 118.68, 120.84, 127.71, 129.11, 129.37, 129.78, 130.45, 136.82, 137.79, 147.76, 148.49, 156.80, 161.41, 164.45. M 388.491.

3-Amino-2-(1-oxoamyl)-4,6-diphenylthieno[2,3-b]pyridine (VIIc). Mass spectrum, m/z (I_{rel} , %): 387 (100) $[M + 1]^+$. *M* 386.519. Fluorescent under UV irradiation.

REFERENCES

- Mohamed, S.F., Youssef, M.H., Amr, A.E.-G., and Kotb, E.R., *Scipharm.*, 2008, vol. 76, no. 2, p. 279. DOI: 10.3797/scipharm. 0804-09.
- Abdulla, M.M., *Monatsh. Chem.*, 2008, vol. 139, no. 6, p. 697. DOI: 10.1007/s00706-007-0804-1.
- 3. US Patent 6184237, 2001; *Ref. Zh. Khim.*, 2002, 02.04–190.86P.
- Germany Patent 10130357 2003; *Ref. Zh. Khim.*, 2003. 03.18–19O.347P.

- Krauze, A.A., Bomika, Z.A., Shestopalov, A.M., Rodinovskaya, L.A., Pelcher, Yu.É., Dubur, G.Ya., Sharanin, Yu.A., and Promonenkov, V.K., *Chem. Heterocycl. Compd.*, 1981, vol. 17, no. 3, p. 279. DOI: 10.1007/BF00505994.
- Shestopalov, A.M., Promonenkov, V.K., Sharanin, Yu.A., Rodinovskaya, L.A., and Sharanin, S.Yu., *Zh. Org. Khim.*, 1984, vol. 20, no. 7, p. 1517.
- Krauze, A.A., Kalme, Z.A., Pelcher, Yu.É., Liepin'sh, É.É., Dipan, I.V., and Dubur, G.Ya., *Chem. Heterocycl. Compd.*, 1983. vol. 19, no. 11, p. 1202. DOI: 10.1007/ BF00515357.
- Abdel-Fattah, A.M., Elneairy, M.A.A., Gouda, M.N., and Attaby, F.A., *Phosphorus, Sulfur, Silicon, Relat. Elem.*, 2008, vol. 183, no. 7, p. 1592. DOI: 10.1080/ 10426500701693552.
- Elgemeie, G.E.H., Elfohnan, H.A., and Nabey, H.A., Sulfur Lett., 1989, vol. 9, nos. 1–2, p. 47.
- Abdel-Rahman, A.E., Bakhite, E.A., Mohamed, O.S., and Thabet, E.A., *Phosphorus, Sulfur, Silicon, Relat. Elem.*, 2003, vol. 178, no. 1, p. 89. DOI: 10.1080/ 10426500307820.
- Promonenkov, V.K., Shestopalov, A.M., Sharanin, Yu.A., Litvinov, V.P., Rodinovskaya, L.P., Zolotarev, B.M., Sokovykh, V.D., Rozynov, B.V., and Krymskii, Ya.Ya., *Zh. Org. Khim.*, 1985, vol. 21, no. 9, p. 1963.
- 12. Dyachenko, V.D., *Russ. J. Org. Chem.*, 2011, vol. 47, no. 10, p. 1535. DOI: 10.1134/S1070428011100150.
- 13. Dyachenko, V.D., *Chem. Heterocycl. Compd.*, 2005, vol. 41, no. 8, p. 1005. DOI: 10.1007/s10593-005-0268-3.
- Dyachenko, V.D. and Chernega, A.N., Chem. Heterocycl. Compd., 2005, vol. 41, no. 12, p. 1499. DOI: 10.1007/s10593-006-0027-0.
- Stork, G., Brizzolara, A., Landesman, H., Szmuszkovich, J., and Terrell, R., *J. Am. Chem. Soc.*, 1963, vol. 85, no. 2, p. 207. DOI: 10.1021/ja00885a021.
- Mishchenko, G.L. and Vatsuro, K.V., Sinteticheskie metody organicheskoi khimii (Synthetic Methods of Organic Chemistry), Moscow: Khimiya, 1982, p. 297.
- 17. EP Patent EP 1683799, 2006; *Ref. Zh. Khim.*, 2007, 07.20–190.115P.
- 18. US Patent US 6964956, 2005; *Ref. Zh. Khim.*, 2006, 06.14–190.69P.
- 19. EP Patent EP 1681292, 2006; *Ref. Zh. Khim.*, 2007, 07.20–190.116P.
- Pretsch, E., Biihlmann, P., and Affolter, C., *Structure Determination of Organic Compounds*, Berlin: Springer, 2000.