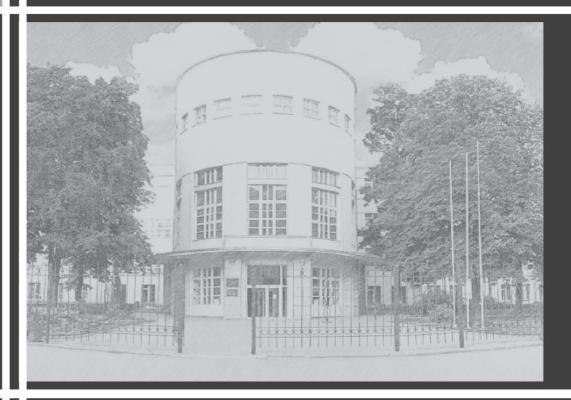


Научное издание


BECTHIK

Луганского национального университета имени Тараса Шевченко

Серия 3

Технические науки Физико-математические науки

№1(11) 2018

Издатель ГОУ ВПО ЛНР «Луганский национальный университет имени Тараса Шевченко» «Книта»

ул. Оборонная, 2, г. Луганск, 91011, т/ф (0642)58-03-20

Министерство образования и науки Луганской Народной Республики Государственное образовательное учреждение высшего профессионального образования Луганской Народной Республики «Луганский национальный университет имени Тараса Шевченко»

ВЕСТНИК

Луганского национального университета имени Тараса Шевченко

Серия 3

Технические науки Физико-математические науки

№ 1(11) • 2018

Сборник научных трудов

УДК [62+51+53](062/552)+08:378.4(477.61)ЛНУ ББК 95.43(4Укр-4Луг)+3я5+22.1я5+22.3я5 В 38

Учредитель и издатель ГОУ ВПО ЛНР «ЛНУ имени Тараса Шевченко»

Основан в 2015 г.

Свидетельство о регистрации средства массовой информации ПИ 000089 от 13 февраля 2017 г.

РЕДАКЦИОННАЯ КОЛЛЕГИЯ:

Главный редактор

Трегубенко Е.Н. – доктор педагогических наук, профессор

Заместитель главного редактора

Сорокина Г.А. – доктор педагогических наук, профессор

Выпускающий редактор

Вострякова Н.В. – заведующий редакционно-издательским отделом

Редактор серии

Своеволина Г.В. – кандидат технических наук, доцент

Состав редакционной коллегии серии:

Антипова Л.В. — доктор технических наук, профессор — доктор технических наук, профессор

Дымарский Я.М. – доктор физико-математических наук, профессор

Заплетников И.Н. – доктор технических наук, профессор Зубков В.Е. – доктор технических наук, профессор

Орешкин М.В. – доктор сельскохозяйственных наук, профессор

Соколов С.А. – доктор технических наук, доцент

Турбин А.Ф. – доктор физико-математических наук, профессор

Вестник Луганского национального университета имени Тараса Шевченко : сб. науч. тр. / гл. ред. Е.Н. Трегубенко; вып. ред. Н.В. Вострякова; ред. сер. Г.В. Своеволина. — Луганск : Книта, 2018. — № 1(11): Серия 3, Техн. науки. Физ.-мат. науки. — 108 с.

Настоящий сборник содержит оригинальные материалы ученых различных отраслей наук и групп специальностей, а также результаты исследований научных учреждений и учебных заведений, обладающие научной новизной, представляющие собой результаты проводимых или завершенных изучений теоретического или научно-практического характера.

В сборник включены материалы Международной научно-практической конференции «Наука, образование и производство: перспективы интеграции и инновационного развития» (29–30 ноября 2017 г., г. Луганск).

Адресуется ученым-исследователям, докторантам, аспирантам, соискателям, педагогическим работникам, студентам и всем, интересующимся проблемами технических и физико-математических наук.

Издание включено в РИНЦ.

Печатается по решению Ученого совета Луганского национального университета имени Тараса Шевченко (протокол № 9 от 30 марта 2018 г.)

УДК [62+51+53](062/552)+08:378.4(477.61)ЛНУ ББК 95.43(4Укр-4Луг)+3я5+22.1я5+22.3я5

> © Коллектив авторов, 2018 © ГОУ ВПО ЛНР «ЛНУ имени Тараса Шевченко», 2018

СОДЕРЖАНИЕ

ТЕХНИЧЕСКИЕ НАУКИ	
	Бакаева Н.В., Калайдо А.В. Прогнозирование уровней радона в помещениях нижнего этажа зданий
	Дейнека И.Г. Современная практика интеграции производства, образования и науки
	Зубова Л.Г., Верех-Белоусова Е.И., Гузенко А.Л. Использование способа биохимического выщелачивания для получения алюминия из отвальной породы угольных шахт Луганщины
	Шаповалов В.Д. Моделирование автоматизированного компьютерно-интегрированного технологического процесса обработки кожи
	Щербинина И.А., Домниченко Р.Г. Генезис и трансформация свойств товаров
Технология изготовления продовольственной продукции	
	Авершина А.С., Украинцева Ю.С., Павленко А.Т. Оптимизация жирнокислотного состава напитка кисломолочного для детского питания «биолакт»
	Болдырева М.С. Тенденции развития продуктов здорового питания37
	Киреева Е.И., Титова Е.А. Подбор и модернизация оборудования для про- изводства хлебобулочных изделий из цельного зерна пшеницы
	Попова Я.А., Квасников А.А. Перспективы использования специализированных продуктов из мяса кроликов для питания спортсменов при скоростно силовых нагрузках
	Своеволина Г.В. Оценка конкурентоспособности усовершенствованной технологии заварных пряников с начинкой и без начинки
Машины и аппараты промышленных производств	
	Бухтияров И.Ю., Сухаревский А.А. Анализ затрат мощности на привод вентиляторов охлаждающих устройств тепловозов при различных способах регулирования
	Гулевский В.А., Карпов В.В., Баранова М.А., Корнеева А.Н. Условия осуществления механической очистки поверхностей щеточными элементами криволинейной формы
	Жданова М.Н., Петреченко В.В. Формирование защитного цинкового покрытия на деталях автомобилей из углеродистых сталей70

УДК 687.056

Гулевский Вячеслав Анатольевич,

д-р техн. наук, профессор кафедры высшей математики и теоретической механики ФГБОУ ВПО «Воронежский государственный аграрный университет имени императора Петра I», Российская Федерация main@srd.vsau.ru

Карпов Владислав Викторович,

старший преподаватель кафедры безопасности жизнедеятельности, охраны труда и гражданской защиты ГОУ ВПО ЛНР «Луганский национальный университет имени Тараса Шевченко» vip belyy@mail.ru

Баранова Марина Анатольевна,

канд. мед. наук, доцент кафедры безопасности жизнедеятельности, охраны труда и гражданской защиты ГОУ ВПО ЛНР «Луганский национальный университет имени Тараса Шевченко» bjd@ltsu.org

Корнеева Анжелика Николаевна,

канд. пед. наук, доцент кафедры технологий производства и профессионального образования ГОУ ВПО ЛНР «Луганский национальный университет имени Тараса Шевченко» $korneeva_an@mail.ru$

Условия осуществления механической очистки поверхностей щеточными элементами криволинейной формы

В статье анализируются условия осуществления механической очистки объектов цилиндрической формы гофрощеточными элементами в виде криволинейных полосок. Рассмотрена схема взаимодействия объекта очистки со щеточным барабаном очистителя. Определена угловая скорость вращения гофрощетки и ее влияние на нормальную и полезную силы счесывания, действующие на очищаемые объекты.

Ключевые слова: гофрощетка, механическая очистка, щеточный элемент, объект очистки, загрязнение.

Общеизвестен факт широкого использования технических щеток самого различного конструктивного исполнения во всех отраслях народного хозяйства: в коммунальном и сельском хозяйстве, в лёгкой и тяжелой промышленности, на транс-

порте и в пищевой промышленности, в качестве средств гигиены и предметов труда в изобразительном искусстве и т.д. Основу всех технических щеток составляют гибкие упругие элементы в виде гладких щеточных ворсин, нитей, стержней малой жесткости, упругих пальцев, лопастей, бичей, полосок и т.д. [2]. Нами разработана новая конструкция гофрощеточного очистителя, основу рабочих органов которой составляют гибкие упругие гофрированные щеточные элементы в виде криволинейных полосок пильчатого профиля, возможные конструктивные исполнения которых представлены на рис. 1 [3, 4].

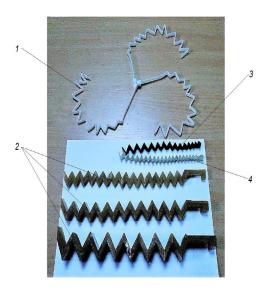


Рисунок 1 – Варианты гофрированных щеточных полосок:

- 1 гофрощетки из нейлона,
- 2 гофрощетки из капрона,
- 3 гофрощетки из резины;
- 4 гофрощетки из перлона

Механическая очистка загрязненных объектов цилиндрической формы гофрощеточным очистителем осуществляется вследствие их контакта с гофрированными криволинейными полосками «пильчатого профиля», шарнирно закрепленными на рабочих органах очистителя. В качестве объектов очистки цилиндрической формы может выступать различное сельскохозяйственное сырье и материалы, полуфабрикаты текстильной и целлюлозной промышленности, объекты в автомобилестроении и т.д. [2; 5].

В процессе обработки, за счет принудительного вращательного движения рабочих элементов барабанов и поступательно-вращательного перемещения объектов очистки вдоль их наклонной ротационной поверхности, осуществляется копирование неровностей объектов очистки выступами гофрополосок и счесывание налипших загрязнений. Схема взаимодействия единичного объекта очистки с гофрощеточным барабаном и направляющей заслонкой в рабочем объеме очистителя представлена на рис. 2.

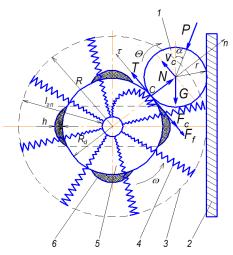


Рисунок 2 — Схема взаимодействия объекта очистки с очистителем:

1 - объект очистки;

- 2 заслонка;
- 3 гофрощеточный барабан;
- 4 гофрированная полоска;
- 5 эластичный диск;
- 6 эллиптические утолщения

Для осуществления процесса очистки рабочими элементами гофрощеточного очистителя необходимо выполнение следующих условий: во-первых, наличие достаточной для счесывания и отделения имеющихся связанных загрязнений нормальной силы N, т.к. именно она обеспечивает возникновение полезной силы трения (счёсывания) Т (Рис. 2). Во-вторых, полезная сила счесывания Tдолжна быть больше составляющих сил связи загрязнения с поверхностью объекта очистки или сил внутреннего трения загрязнения в случае послойного ее удаления с поверхности очищаемых объектов. В-третьих, гофрополосный ворс должен быть упругодеформированным и обладать достаточной потенциальной и кинетической энергией [3; 4].

Представим основное условие осуществления механической очистки загрязненного объекта с помощью гофрощеточных полосок криволинейной формы в виде:

$$T \ge F_C + F_f$$
 (1) где F_c – сила сопротивления загрязнения сдвигу, определяется зависимостью $F_C = \tau_c \cdot S_s$, где τ_c – сопротивление за-

грязнения сдвигу ее по самому загрязнению или по поверхности объекта очистки; S_{ε} – площадь наружной поверхности очистного гофра единичной полоски, определяется зависимостью h_{co} , где b – ширина гоф

поверхности очистного гофра единичной полоски, опре-
$$S_z = \pi r_0 b (1 + \frac{bc}{q_n \cos \frac{\gamma_0}{2}})$$
, где b – ширина гоф

рополоски; r_{0} — радиус скругления вершин гофр полоски; $\overline{\gamma}_{0}$ — угол при вершине гофра полоски; c — объемный коэффициент смятия загрязнения (в основном это налипшие почвенные отдельности); q_{n} — сопротивление почвы внедрению гофра полоски;

 F_f — сила сопротивления скольжению гофр полосок по поверхности очистки, определяется зависимостью $F_f=Nf_2$, где f_2 — коэффициент трения скольжения гофрополос о почву на объектах очистки, в случае послойного удаления почвы вместо f_2 используем коэффициент f_3 внутреннего трения почвы, связанной с объектом очистки

Тогда условие осуществления процесса очистки (1), с учетом ранее полученной зависимости для полезной силы счесывания T, примет вид:

$$\frac{\tau_{c}\pi r_{0}b(1+\frac{b\cdot c}{q_{n}\cos\frac{\gamma_{0}}{2}})}{\sqrt{\rho^{2}(\psi-\omega)^{2}+\dot{z}^{2}}}\cdot N \geq \frac{q_{n}\cos\frac{\gamma_{0}}{2}}{f_{1}-f_{2}}$$
(2)

где ω – угловая скорость вращения объекта очистки, с⁻¹;

- ρ радиальный параметр положения центра тяжести объекта очистки относительно оси щеточного барабана;
- z и ψ координаты абсолютной неподвижной системы координат $O\!XY\!Z$ и их производные \dot{z}, ψ , \ddot{z}, ψ ;
- au_c сопротивление почвы сдвигу ее по почве или по поверхности объекта очистки;
 - b, r_{o} , γ_{o} геометрические характеристики гофрополоски;
 - c объемный коэффициент смятия почвы;
 - q_{x} сопротивление почвы внедрению гофра полоски.

Полезная сила счесывания *T*, в наибольшей степени, зависит от веса вышележащих слоев объектов очистки, конструктивных особенностей гофрополосного криволинейного ворса «пильчатого» профиля и его угловой скорости вращения [1]. Угловая скорость вращения гофрополосного ворса, с точки зрения осуществления процесса очистки, также должна удовлетворять условию:

$$\omega_{\min} \le \omega < \omega_{\max} \tag{3}$$

где ω_{\min} – минимальная угловая скорость вращения гофрополосного ворса, необходимая для поддержания его в рабочем упругодеформированном положении и начала отделения примесей, определяется зависимостью $\omega_{\min} = \frac{v_{C\min}}{R}$, где $v_{C\min}$ – минимальная скорость разрушения налипших почвенных отдельностей гофрополосным ворсом (определяется экспериментальным путем), R – радиус щеточного барабана (Рис. 2);

 $\omega_{\scriptscriptstyle max}$ – максимальная угловая скорость вращения гофрополосного ворса, определяемая из условия равенства N=0:

$$\omega \langle \omega_{\text{max}} = 0.5 \left[\dot{\psi} - \frac{\dot{z}}{\rho} + \sqrt{\left(\frac{\dot{z}}{\rho} - \dot{\psi} \right)^2 - \frac{2 \left[mg \cos \gamma \cos \psi - P(\sin \alpha \sin \psi - \cos \alpha \cos \gamma \cos \psi) \right]}{m \sin \gamma \rho}} \right]$$
(4)

Зависимость нормальной силы N и полезной силы счесывания T, действующей на очищаемые объекты очистки, от угловой скорости вращения гофрополосного ворса представлена на рис. 3.

Таким образом, из анализа зависимости (4) и графика на рис. 3 видим, что с увеличением частоты вращения гофрощеточных барабанов увеличивается действие центробежных сил на гофрощеточный ворс и объекты очистки, что ведет к снижению величины нормальной реакции и полезной силы счесывания, действующей на очищаемые поверхности.

С ростом угловой скорости вращения барабанов уменьшается время их контакта с объектами очистки и увеличивается окружная ψ и осевая \dot{z} скорость прохождения очищаемых объектов по ним.

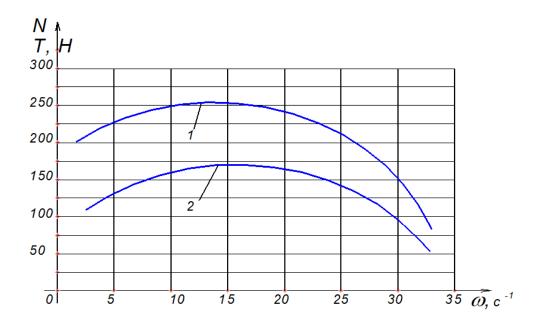


Рисунок 3 — Зависимость силы счесывания T(1) и нормальной реакции N(2) от угловой скорости вращения гофрополосного ворса

С увеличением количества одновременно обрабатываемых объектов, угловую скорость вращения гофрощеточного ворса барабанов также необходимо увеличивать.

Список литературы

- **1.** Вальщиков Ю.Н. Производство, расчет и конструирование щеточных устройств / Ю.Н. Вальщиков. Л. : ЛГУ, 1974. С. 113–134.
- **2. Емельянов П.А.** Расчет параметров гибких упругих элементов в ориентирующих устройствах с учетом динамического изгиба / П.А. Емельянов // Механизация и электрификация сельского хозяйства. 2010. №10. С. 28–29.
- 3. **Карпов В.В.** Упругие свойства гофрированного ворса пильчатого профиля / В.В. Карпов // Вестник Алтайского государственного аграрного университета. Барнаул : ФГБОУ ВПО «АГАУ», 2013. №12. С. 87–90.
- **4. Карпов В.В.,** Гулевский В.А. Анализ сил взаимодействия рабочих органов гофрощеточных барабанов очистителя кормовых корнеплодов с объектами очистки / В.В. Карпов, В.А. Гулевский // Вестник Воронежского государственного аграрного университета. 2017. Вып. 2. С. 121—127.
- **5. Фролов В.** Машины и технологии в молочном животноводстве / В Фролов, Д Сысоев, С Сидоренко. СПб. : Лань, 2017. 308 с.